化学合成是药物研发和工艺开发的核心任务,但其过程复杂且高度依赖专家经验。传统的合成开发通常需要化学家进行大量的文献检索、实验设计、条件优化和数据分析,这一过程不仅耗时,还涉及高昂的成本。尽管机器学习技术已经在某些环节(如催化剂设计、反应条件优化)展现出潜力,但现有的方法通常是单一功能的工具,无法实现全流程的自动化。
摘要
大型语言模型(LLM)技术的快速出现为促进合成反应的发展提供了有前景的机会。在这项工作中,我们利用GPT-4的强大功能构建了一个基于LLM的反应开发框架(LLM-RDF),以处理整个化学合成开发过程中涉及的基本任务。LLM-RDF由六个专门的基于LLM的代理组成,包括文献侦察员、实验设计师、硬件执行器、频谱分析仪、分离讲师和结果解释器,这些代理会被预先提示完成指定的任务。构建了一个以LLM-RDF为后端的web应用程序,允许化学家用户与自动化实验平台进行交互,并通过自然语言分析结果,从而消除了对编码技能的需求,并确保所有化学家都能访问。我们展示了LLM-RDF在指导铜/TEMPO催化的好氧醇氧化制醛反应的端到端合成开发过程中的能力,包括文献检索和信息提取、底物范围和条件筛选、反应动力学研究、反应条件优化、反应放大和产品纯化。此外,LLM-RDF的广泛适用性和通用性在三种不同反应(SNAr反应、光氧化还原C-C交叉偶联反应和非均相光电化学反应)的各种合成任务中得到了验证。
核心问题:为什么需要自动化?
1. 设计空间巨大:化学合成的设计空间非常庞大,涉及底物、催化剂、溶剂、温度等多个变量,手动筛选最优条件几乎是不可能的任务。
2. 实验验证的必要性:即使通过计算预测出可能的反应路径,仍需实验验证,而实验本身耗时且资源密集。
3. 多目标优化:合成反应不仅需要高收率,还需考虑成本、安全性、可持续性等多个目标,这使得优化过程更加复杂。
· 现有技术的局限 ·
尽管机器学习技术已经在化学合成中取得了一些进展,例如:
-
深度学习辅助的催化剂设计:通过定量构效关系(QSAR)模型预测催化剂性能。
-
自动化合成规划:利用机器学习快速筛选可能的合成路径。
-
高通量实验平台:通过自动化设备加速反应条件筛选。
然而,这些技术通常是单一功能的工具,无法覆盖从文献检索到产物纯化的全流程。此外,现有的自动化平台通常需要复杂的编程和硬件操作技能,限制了其在化学家中的普及。
⚙️LLM驱动的自动化平台
最近,一项发表在Nature Communications的研究提出了一种全新的解决方案——基于大语言模型的反应开发框架(LLM-RDF)。该平台利用GPT-4的强大能力,构建了六个专门的LLM代理,分别负责文献检索、实验设计、硬件控制、光谱分析、分离指导和结果解释。这些代理通过自然语言与化学家交互,实现了从实验设计到数据分析的全流程自动化。
核心功能:六大代理,无缝协作
1️⃣文献检索代理
通过Semantic Scholar数据库,自动筛选出最相关的合成方法。例如,用户只需输入“用空气氧化醇生成醛的方法”,代理就能快速推荐最优的催化体系(如铜/TEMPO催化氧化),并提取详细的实验条件。
2️⃣实验设计代理
将自然语言描述的实验需求转化为标准化的实验方案。例如,用户描述“筛选6种底物、4种催化剂和2种碱”,代理自动生成实验设计,并优化溶剂选择(如用DMSO替代易挥发的乙腈)。
3️⃣硬件执行代理
将实验方案转化为自动化设备的可执行代码。例如,生成Opentrons OT-2液体处理器的Python脚本,实现高通量筛选和动力学实验的自动化。
4️⃣光谱分析代理
自动化处理GC-FID-MS和NMR数据,识别特征峰并计算反应产率。例如,通过质谱碎片(如m/z 132)识别底物和产物,并自动生成产率报告。
5️⃣分离指导代理
优化TLC和柱层析的洗脱剂组成。例如,通过迭代实验确定最佳洗脱剂比例(如正己烷:乙酸乙酯=3:1),确保产物高效分离。
6️⃣结果解释代理
分析实验结果并给出化学解释。例如,在铜催化氧化反应中,代理发现DBU碱的性能优于NMI,并解释了电子效应对反应速率的影响。
基于LLM的反应开发多智能体系统概述。由大型语言模型(LLM)技术促进的化学合成开发工作流程,并与代表性已发表作品进行比较。(灰色线条表示LLM的参与)。b说明人类化学家与基于LLM的试剂之间相互作用的图,用于执行化学合成开发中的任务。c以LLM为基础的代理作为端到端反应开发后端的web应用程序。
· 案例展示:从实验室到工业化 ·
研究团队通过多个案例验证了LLM-RDF的强大能力↓
论文实验部分详细分析
上面的图表展示了LLM-RDF平台的整体工作流程,从用户输入自然语言指令,到六大代理协同工作,最终得出实验结果。下面是各个案例的关键点👇
案例一:文献检索与信息提取
用户只需输入"用空气氧化醇生成醛的方法",Literature Scouter代理就能在几分钟内从Semantic Scholar数据库中筛选出Stahl研究组的铜/TEMPO催化氧化方法,并提取详细实验条件。这将传统文献筛选时间从数小时缩短至几分钟。
**基于LLM的代理促进了文献搜索和信息提取。**由literature Scouter代理复制的文献搜索和信息提取工作流程。b人类化学家与文学鉴赏家之间的互动。为了便于说明,图中显示的对话框被简化。
案例二:底物范围与条件筛选
系统通过高通量实验筛选了48个反应条件(6种底物×4种催化剂×2种碱)。Experiment Designer代理优化了溶剂选择,Hardware Executor代理生成了自动化设备代码,Spectrum Analyzer代理处理了分析数据。最终发现CuCl₂/DBU组合效果最佳,整个过程仅需几小时(传统方法需数天)。
基于LLM的试剂有助于底物范围和条件筛选
底物范围和条件筛选结果
案例三:反应动力学研究
系统研究了铜/TEMPO催化氧化反应在不同溶剂中的动力学行为。通过10小时自动采样和NMR数据分析,系统发现DMSO溶剂中产物过氧化速率低于乙腈,解释了其高选择性的原因。模型拟合精度达R²>0.95。
基于LLM的试剂促进了反应动力学研究
由实验设计者、硬件执行器、光谱分析仪和结果解释器代理复制的反应动力学研究工作流程。b二醇12在不同溶剂和铜催化剂中的产物和过氧化副产物的收率比较。c人类化学家与基于LLM的试剂之间的相互作用,用于反应动力学研究(详见补充表19-24)。匕首符号表示数值结果由代理的代码解释器生成,而星号表示数值结果直接由LLM提供。d通过光谱分析仪确定的特征质子核磁共振峰,用于计算反应样品的组成。e DMSO溶剂中的时间过程浓度分布,以及由结果解释器给出的拟合反应动力学曲线,速率常数k1=22:34 M 1,k2=2:84×10 3 M min 1,k3=2:51×10 4 min 1,决定系数R2=0:996
案例四:反应条件优化
系统利用贝叶斯优化算法自动优化了铜/TEMPO催化氧化反应条件。Hardware Executor代理生成自动化平台代码,系统在26次实验内找到了最优条件(Cu(OTf)₂/DBU组合,反应时间45分钟),产率达94.5%。传统方法通常需要数百次实验。
基于LLM的试剂促进了自驱动反应条件的优化。
a基于LLM的代理复制自驱动反应优化系统。用户通过web应用程序,以实验设计器和硬件执行器为后端,通过自然语言与硬件系统进行交互。补充表37-38提供了任务自然语言描述的准确转录。由贝叶斯优化算法驱动的自动反应优化平台分别使用自动Unchained合成平台和高效液相色谱进行闭环反应和分析。Unchained Labs Big Kahuna合成平台的图片来自Unchained Lab网站闭环反应优化过程中(b)产率和(c)改进概率(PI)值的演变曲线。d结果解释器关于是否应在第6、12、22和26次实验时终止反应优化的建议。
案例五:反应放大与产物纯化
系统成功将实验室规模反应放大到1克规模,Separation Instructor代理通过迭代TLC实验确定了最佳洗脱剂比例(正己烷:乙酸乙酯=3:1)。最终产物纯度超过98%,总收率达86%。
基于LLM的试剂促进了反应规模的扩大和产物的纯化
由实验设计师和分离讲师代理复制的反应放大和产品纯化工作流程。b人类化学家与反应放大实验设计师和分离讲师之间的互动,以找到最佳洗脱液成分(详见补充表41-45中的详细互动对话框)。星号表示数值结果直接由大型语言模型(LLM)提供。c用于比较自驱动反应优化过程中获得的三种高产反应条件的雷达图(实验26、32和35)。d DMSO-d6中纯化目标产物(12p)的质子核磁共振(1H NMR)光谱(完整光谱信息见补充信息第6.7节)
· 总体收益 ·
1. 实验效率:传统方法需要数天完成的工作,LLM-RDF平台几小时内即可完成
2. 优化能力:减少了90%以上的实验次数,同时提高了产率
3. 专业知识整合:自动提取和应用领域知识,减少对人类专家的依赖
4. 可重复性:标准化工作流程提高了实验可重复性
5. 放大潜力:为工业化生产提供可行方案
这种AI驱动的化学合成自动化平台代表了实验室工作方式的革命性变革,将大幅加速新药和新材料的研发进程。
LLM-RDF在化学合成发展中的应用
局限性与未来方向
-
可靠性问题:LLM生成的硬件代码需人工审核,未来可通过自检代理提升自动化水平。
-
领域知识不足:通过微调和RAG技术注入更多化学知识,提升代理的机理解释能力。
-
开源替代:开源模型(如Llama3.1-70B)在部分任务中表现接近GPT-4,未来有望成为更经济的替代方案。
🎯最后的话
在科学与技术的交汇处,每一次突破都是人类智慧与机器能力的共舞。大语言模型驱动的化学合成平台,不仅是对传统实验模式的颠覆,更是我们对未来无限可能的探索。正如化学反应中的每一次键合与断裂,都蕴含着新的生机与希望,AI与化学的结合,也将为人类打开一扇通往未知世界的大门。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。