【文档智能 & RAG】RAG增强之路:增强PDF解析并结构化技术路线方案及思路

前言

现阶段,尽管大模型在生成式问答上取得了很大的成功,但由于大部分的数据都是私有数据,大模型的训练及微调成本非常高,RAG的方式逐渐成为落地应用的一种重要的选择方式。然而,如何准确的对文档进行划分chunks,成为一种挑战,在现实中,大部分的专业文档都是以 PDF 格式存储,低精度的 PDF 解析会显著影响专业知识问答的效果。因此,本文将介绍针对pdf,介绍一些pdf结构化技术链路供参考。

一、可编辑文档

1.1 语义分段

经pdf解析工具后,原始文档的段落信息全部丢失,需要进行段落的划分和重组。下面介绍一种语义分段模型的训练思路和一种开源的分段模型。

  • 开源的模型
from modelscope.outputs import OutputKeys   from modelscope.pipelines import pipeline   from modelscope.utils.constant import Tasks      p = pipeline(       task=Tasks.document_segmentation,       model='damo/nlp_bert_document-segmentation_chinese-base')      result = p(documents='移动端语音唤醒模型,检测关键词为“小云小云”。模型主体为4层FSMN结构,使用CTC训练准则,参数量750K,适用于移动端设备运行。模型输入为Fbank特征,输出为基于char建模的中文全集token预测,测试工具根据每一帧的预测数据进行后处理得到输入音频的实时检测结果。模型训练采用“basetrain + finetune”的模式,basetrain过程使用大量内部移动端数据,在此基础上,使用1万条设备端录制安静场景“小云小云”数据进行微调,得到最终面向业务的模型。后续用户可在basetrain模型基础上,使用其他关键词数据进行微调,得到新的语音唤醒模型,但暂时未开放模型finetune功能。')      print(result[OutputKeys.TEXT])   # 输出   '''      移动端语音唤醒模型,检测关键词为“小云小云”。模型主体为4层FSMN结构,使用CTC训练准则,参数量750K,适用于移动端设备运行。模型输入为Fbank特征,输出为基于char建模的中文全集token预测,测试工具根据每一帧的预测数据进行后处理得到输入音频的实时检测结果。      模型训练采用“basetrain + finetune”的模式,basetrain过程使用大量内部移动端数据,在此基础上,使用1万条设备端录制安静场景“小云小云”数据进行微调,得到最终面向业务的模型。后续用户可在basetrain模型基础上,使用其他关键词数据进行微调,得到新的语音唤醒模型,但暂时未开放模型finetune功能。   '''   

二、可编辑文档(扫描件)

2.1 版面分析

版面分析指的是对图片形式的文档(扫描件)进行区域划分,通过bounding box定位其中的关键区域,如:文字、标题、表格、图片等,通常采用一些CV目标检测模型进行版式分析,如:参数量大的有:DINO等基于transformer的目标检测模型;参数量小的有MaskRCNN、YOLO系列等。

版式分析的优势,通过大量标注的数据,准确的划分出文档关键区域,如下:

  • 文本区域:页眉、页脚、标题、段落、页码、脚注、图片标题、表格标题等

  • 表格

  • 公式

  • 图片

2.2 文本识别

对于经由版式分析划分出来的文本区域,通常采用OCR进行相应区域的文字识别,常见的开源OCR识别工具有读光OCR、PaddleOCR等,以下是PaddleOCR的使用例子:

import cv2   from paddleocr import PaddleOCR   paddleocr = PaddleOCR(lang='ch', show_log=False, enable_mkldnn=True)    img = cv2.imread('1.jpg')     result = paddleocr.ocr(img)   for i in range(len(result[0])):       print(result[0][i][1][0])   # 输出识别结果   

然而,像paddleOCR等开源ocr方式,在实际应用中还是存在很多的问题,如:

  • 漏识别:开源的一些ocr模型通常有检测和识别两阶段构成,如果检测模型检测不准,将会错误累积,ocr识别时也不准确。

  • 识别文字错误:开源模型毕竟免费,没有在特定的领域场景上进行特定的训练,因此在识别时难免出现错误。

2.3 表格解析

对于经由版式分析划分出来的表格区域,通常采用表格解析模型进行解析,并转化为特定的格式,如:csv、html、markdown格式等。常见的开源模型有ppstructure等,如下:

import os   import cv2   from paddleocr import PPStructure,save_structure_res   table_engine = PPStructure(layout=False, show_log=True)    save_folder = './output'   img_path = 'table.jpg'   img = cv2.imread(img_path)   result = table_engine(img)   save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])   for line in result:       line.pop('img')       print(line)   

在实际使用过程中,常见的开源方法经常遇到的问题就是,无法准确的对表格进行解析,这种问题常见与复杂表格,尤其是表格合并单元格时,容易解析错误,行列不对齐等。

2.4 公式解析

在这里插入图片描述

对于经由版式分析划分出来的公式区域,通常采用公式解析模型进行解析,并转化为特定的格式,如:tex等。

下面是一个使用LatexOCR进行公式解析的例子:

from PIL import Image   from pix2tex.cli import LatexOCR      model = LatexOCR()   img = Image.open('1.jpg')   print(model(img))   

三、阅读顺序

经上述解析后,需要根据boungding box进行排序,以便恢复文档的格式信息。下面将介绍一种基于规则的方法和一种基于Layoutreader模型的方法。

在这里插入图片描述

  • xy-cut

    import numpy as np      def xy_cut(bboxes, direction="x"):       result = []       K = len(bboxes)       indexes = range(K)       if len(bboxes) <= 0:           return result       if direction == "x":           # x first           sorted_ids = sorted(indexes, key=lambda k: (bboxes[k][0], bboxes[k][1]))           sorted_boxes = sorted(bboxes, key=lambda x: (x[0], x[1]))           next_dir = "y"       else:           sorted_ids = sorted(indexes, key=lambda k: (bboxes[k][1], bboxes[k][0]))           sorted_boxes = sorted(bboxes, key=lambda x: (x[1], x[0]))           next_dir = "x"          curr = 0       np_bboxes = np.array(sorted_boxes)       for idx in range(len(sorted_boxes)):           if direction == "x":               # a new seg path               if idx != K - 1 and sorted_boxes[idx][2] < sorted_boxes[idx + 1][0]:                   rel_res = xy_cut(sorted_boxes[curr:idx + 1], next_dir)                   result += [sorted_ids[i + curr] for i in rel_res]                   curr = idx + 1           else:               # a new seg path               if idx != K - 1 and sorted_boxes[idx][3] < sorted_boxes[idx + 1][1]:                   rel_res = xy_cut(sorted_boxes[curr:idx + 1], next_dir)                   result += [sorted_ids[i + curr] for i in rel_res]                   curr = idx + 1          result += sorted_ids[curr:idx + 1]       return result         def augment_xy_cut(bboxes,                      direction="x",                      lambda_x=0.5,                      lambda_y=0.5,                      theta=5,                      aug=False):       if aug is True:           for idx in range(len(bboxes)):               vx = np.random.normal(loc=0, scale=1)               vy = np.random.normal(loc=0, scale=1)               if np.abs(vx) >= lambda_x:                   bboxes[idx][0] += round(theta * vx)                   bboxes[idx][2] += round(theta * vx)               if np.abs(vy) >= lambda_y:                   bboxes[idx][1] += round(theta * vy)                   bboxes[idx][3] += round(theta * vy)               bboxes[idx] = [max(0, i) for i in bboxes[idx]]       res_idx = xy_cut(bboxes, direction=direction)       res_bboxes = [bboxes[idx] for idx in res_idx]       return res_idx, res_bboxes         bboxes = [[58.54924774169922, 1379.6373291015625, 1112.8863525390625, 1640.0870361328125],             [60.1091423034668, 483.88677978515625, 1117.4927978515625, 586.197021484375],             [57.687435150146484, 1098.1053466796875, 387.9796142578125, 1216.916015625],             [63.158992767333984, 311.2080993652344, 1116.2508544921875, 365.2145080566406],             [138.85513305664062, 144.44039916992188, 845.18017578125, 198.04937744140625],             [996.1032104492188, 1053.6279296875, 1126.1046142578125, 1071.3463134765625],             [58.743492126464844, 634.3077392578125, 898.405029296875, 700.9544677734375],             [61.35755920410156, 750.6771240234375, 1051.1060791015625, 850.3980712890625],             [426.77691650390625, 70.69780731201172, 556.0884399414062, 109.58145141601562],             [997.040283203125, 903.5933227539062, 1129.2984619140625, 921.10595703125],             [59.40523910522461, 1335.1563720703125, 329.7382507324219, 1357.46533203125],             [568.9025268554688, 14.365530967712402, 1087.898193359375, 32.60292434692383],             [998.1250610351562, 752.936279296875, 1128.435546875, 770.4116821289062],             [59.6968879699707, 947.9129638671875, 601.4513549804688, 999.4548950195312],             [58.91489028930664, 1049.8773193359375, 487.3372497558594, 1072.2935791015625],             [60.49456024169922, 902.8802490234375, 600.7571411132812, 1000.3502197265625],             [60.188941955566406, 247.99755859375, 155.72970581054688, 272.1385192871094],             [996.873291015625, 637.3861694335938, 1128.3558349609375, 655.1572875976562],             [59.74936294555664, 1272.98828125, 154.8768310546875, 1295.870361328125],             [58.835716247558594, 1050.5926513671875, 481.59027099609375, 1071.966796875],             [60.60163116455078, 750.1132202148438, 376.1781921386719, 771.8764038085938],             [57.982513427734375, 419.16058349609375, 155.35882568359375, 444.25115966796875],             [1017.0194091796875, 1336.21826171875, 1128.002197265625, 1355.67724609375],             [1019.8740844726562, 486.90814208984375, 1127.482421875, 504.61767578125]]      res_idx, res_bboxes = augment_xy_cut(bboxes, direction="y")   print(res_idx)   # res_idx, res_bboxes = augment_xy_cut(bboxes, direction="x")   # print(res_idx)      new_boxs = []   for i in res_idx:       # print(i)          new_boxs.append(bboxes[i])      print(new_boxs)      
    
  • Layoutreader

    import torch   from model import LayoutLMv3ForBboxClassification   from collections import defaultdict      CLS_TOKEN_ID = 0   UNK_TOKEN_ID = 3   EOS_TOKEN_ID = 2         def BboxesMasks(boxes):       bbox = [[0, 0, 0, 0]] + boxes + [[0, 0, 0, 0]]       input_ids = [CLS_TOKEN_ID] + [UNK_TOKEN_ID] * len(boxes) + [EOS_TOKEN_ID]       attention_mask = [1] + [1] * len(boxes) + [1]       return {           "bbox": torch.tensor([bbox]),           "attention_mask": torch.tensor([attention_mask]),           "input_ids": torch.tensor([input_ids]),       }         def decode(logits, length):       logits = logits[1: length + 1, :length]       orders = logits.argsort(descending=False).tolist()       ret = [o.pop() for o in orders]       while True:           order_to_idxes = defaultdict(list)           for idx, order in enumerate(ret):               order_to_idxes[order].append(idx)           order_to_idxes = {k: v for k, v in order_to_idxes.items() if len(v) > 1}           if not order_to_idxes:               break           for order, idxes in order_to_idxes.items():               idxes_to_logit = {}               for idx in idxes:                   idxes_to_logit[idx] = logits[idx, order]               idxes_to_logit = sorted(                   idxes_to_logit.items(), key=lambda x: x[1], reverse=True               )               for idx, _ in idxes_to_logit[1:]:                   ret[idx] = orders[idx].pop()       return ret         def layoutreader(bboxes):       inputs = BboxesMasks(bboxes)       logits = model(**inputs).logits.cpu().squeeze(0)       orders = decode(logits, len(bboxes))       return orders         if __name__ == '__main__':       bboxes = [[584, 0, 595, 1], [35, 120, 89, 133],                 [35, 140, 75, 152]]       model_path = ""       model = LayoutLMv3ForBboxClassification.from_pretrained()          print(layoutreader(bboxes))   # [1, 2, 0]   
    

总结

本文详细介绍了可编辑pdf和不可编辑pdf(扫描件)的一些开源技术方案和路线,整个技术链路是一个pipline的路线,每一个步骤都需要精细的优化。在RAG中,准确的划分chunks,需要依赖文档的版式分析的精准性。因此,尤其是在对文档进行版面分析时,目标检测的粒度及标签需要对落地场景进行特定的分析,不要妄想着存在一个通用的版式分析模型解决一切文档版式分析问题。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 8
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值