RAG混合检索:掌握倒数秩融合RRF多维度提升检索结果评分的秘诀

倒数排名融合 (RRF) 是一种算法,可评估多个以前的排名结果中的搜索分数以生成统一的结果集。在RAG搜索中,每当并行执行两个或更多个查询时,都会使用 RRF。每个查询都会生成一个排名结果集,RRF 可用于将排名合并和同质化为单个结果集,在查询响应中返回。始终使用 RRF 的示例方案包括混合搜索和并行执行的多个矢量查询。

RRF 基于倒数排名的概念,即搜索结果列表中第一个相关文档的排名的倒数。 该方法的目标是考虑项目在原始排名中的位置,并赋予在多个列表中排名较高的项目更高的重要性。这有助于提高最终排名的整体质量和可靠性,使其对融合多个有序搜索结果的任务更加有用。

RRF 算法详解

检索增强生成(RAG)是一种将检索模型和生成模型优势结合起来的强大自然语言处理技术。RAG 系统的成功在很大程度上取决于检索阶段的表现,如果检索器无法找到相关文档,系统的精度就会降低,并增加生成内容出现幻觉的可能性。

在处理查询时,一些更适合使用基于关键字的检索技术(如 BM25),而其他则可能在使用语言模型嵌入的密集检索方法中表现更好。混合检索技术旨在弥补这两种方法的不足。而倒数秩融合(RRF)作为一种排名聚合方法,可以将多个检索模型的排名合并,生成一个统一的排名结果。

RRF 算法原理

RRF 是一种用于组合多个来源排名的聚合方法,特别是在 RAG 系统中应用时,不同的检索模型会生成不同的文档排名,RRF 将这些排名融合为一个统一的结果。

RRF的工作流程
  1. 用户查询:用户输入一个查询。

  2. 多重检索器:查询被发送到多个检索器,这些检索器可能使用不同的检索模型(如密集检索、稀疏检索、混合检索)。

  3. 独立排名:每个检索器对相关文档进行排名。

  4. RRF 融合:使用 RRF 公式将所有检索器的排名结果合并。

  5. 生成最终排名:根据 RRF 分数生成一个统一的文档排名。

  6. 生成答案:生成模型使用排名最高的文档生成最终答案。

RRF背后的数学直觉

  1. 倒数排名:RRF 通过 1/(rank + k) 的公式,给排名靠前的文档更多的权重,这确保了在多个检索器中排名靠前的文档在最终排名中被优先考虑。

  2. 收益递减:随着排名的增加,分数的贡献呈非线性递减。这反映了排名 1 和 2 之间的相关性差异通常比排名 100 和 101 之间的差异更大。

  3. 排名聚合:通过对所有检索器的倒数秩求和,RRF 能够有效地结合多个来源的证据,使得最终排名更稳健,并且减少了单个检索器的偏见对结果的影响。

  4. 归一化:常数 k 作为平滑因子,防止任何单个检索器对结果的主导,并有助于更优雅地处理低排名项目中的平局。

k 值的选择

RRF 中常用的 k 值为 60,这一选择背后有几个原因:

  1. 实证表现:k = 60 在各种数据集和检索任务中表现良好。

  2. 平衡影响力:这个值在高排名和低排名项目的影响之间提供了良好的平衡。

  3. 有效的平局:k = 60 有助于在低排名项目中有效打破平局。

  4. 鲁棒性:该值在不同类型的检索系统和数据分布中表现出很强的鲁棒性。

尽管 k = 60 是常用的选择,但最佳值可能因具体应用和数据特性而异。某些系统可能需要调整这个参数以获得更好的表现。

RRF的应用

RRF 通过融合多个检索模型的排名结果,在 RAG 系统中表现出色。其数学原理确保了生成的文档排名具有稳健性,并且可以根据实际应用需求进行调整。

score = 0.0``for q in queries: # loop over queries send to different search engines ``    if d in result(q):`        `score += 1.0 / ( k + rank(result(q), d))``return score``   ``# where``# k is a ranking constant``# q is a query in the set of queries``# d is a document in the result set of q``# result(q) is the result set of q``# rank( result(q), d ) is d's rank within the result(q) starting from 1
def reciprocal_rank_fusion(queries, d, k, result_func, rank_func):`    `return sum([1.0 / (k + rank_func(result_func(q), d)) if d in result_func(q) else 0 for q in queries])

结论

RRF 是 RAG 系统中一种强大的排名聚合工具,通过有效结合多个检索器的排名结果,它能够生成更加稳健和相关的文档排名。掌握 RRF 的原理和应用能够帮助从业者更好地在他们的系统中实现和优化这一技术。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 15
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值