1. 引言
预测股市波动性对于投资策略、经济预测和风险管理实践的基础性作用。作者分析了市场的非线性和固有波动性,以及由于市场对最新事件和情绪的敏感性导致的预测准确性的挑战。此外,提到了传统模型主要依赖历史数据,在捕捉市场波动的多维动态方面的不足。最后,提出了一个关键的研究问题:新闻事件中的情感是否能够作为市场波动的可靠预测因素,并指出了公共数据集在提供精确时间信息方面的缺失,这增加了寻找对市场波动有重大影响的未知因素的复杂性。
2. 相关工作
2.1 与股票市场预测相关的情绪数据集
-
Financial PhraseBank:包含金融新闻中的句子,分为正面、负面和中性情绪,专为金融语境设计。
-
Reuters-21578 News Dataset:作为文本分类任务的基础基准,包含1987年路透社新闻专线的文档。
-
StockTwits Dataset:包括来自StockTwits平台的消息,用户标记了情绪,提供了对股票的众包情绪分析。
-
TweetFinSent:针对股票市场领域设计,专注于“迷因股票”的情绪分析数据集。
-
PsychSignal Dataset:从多个来源收集数据,包括Twitter、StockTwits和各种社交媒体及在线平台上的市场情绪。
-
AG News:常用于文本分类任务,包含来自AG的新闻文章,分为世界、体育、商业和科学四个主要主题。
2.2 与股票市场预测相关的方法
-
将情绪分析与机器学习技术相结合,已成为股票市场预测领域一个有前景的研究方向。
-
LSTM模型结合注意力机制在预测准确性方面表现出优越性,但在提供可靠的置信估计方面存在不足。
-
先前的研究显示了各种技术在金融预测中的有效性,但它们忽略了模型的可解释性和可信度,增加了实际市场中投资失败的风险。
2.3 神经网络模型校准技术
-
模型校准的初步工作,如Platt Scaling和Isotonic Regression,主要关注调整已训练模型的输出。
-
后来的损失函数修改,如Focal Loss,通过更多关注难以分类的示例来修改标准交叉熵损失,但没有直接解决预测概率反映事件真实可能性的准确性问题。
-
各种网络校准技术通过复杂的度量标准来衡量校准质量,如预期校准误差(ECE)和Brier Score。
3. 数据和方法论
3.1 FinSen数据收集与预处理
-
数值数据:使用Yahoo Finance API收集了从2020年1月至2023年6月的标准普尔500指数(S&P 500)的OHLCV数据,包括开盘、最高、最低、收盘和交易量,用于提取价格动量和波动性。
-
文本数据:通过高级网络抓取技术从Trading Economics网站收集新闻标题和内容,该网站提供来自196个国家的超过2000万个指标,包括汇率、股票、指数、债券和商品价格的历史和当前数据。
-
情绪分析:使用FinBERT模型对预处理后的金融新闻文章进行情绪分析和注释,将定性的新闻内容转化为定量的情绪分数。
3.2 提出的方法
- 将情绪分数与LSTM模型结合用于波动性预测:通过Granger因果检验确定市场情绪分数(X)与标准普尔500指数波动性(y)之间的因果关系,并将情绪分析整合到LSTM模型中以预测波动性。
-
将因果验证特征嵌入DAN 3模型进行文本分类:使用Deep Averaging Network(DAN 3)处理文本数据,首先将标记索引转换为密集嵌入,然后对这些嵌入进行平均,形成每个文本实例的固定大小向量表示。
-
Focal Calibration Loss:设计了一种新的损失函数,旨在解决文本分类器训练期间的类别不平衡和模型校准问题,通过结合Focal Loss和校准误差,引入正则化参数λ来平衡关注难例和确保模型预测适当校准之间的权衡。
4. 实验和结果
4.1 建立因果关系:情绪分数对市场波动性的影响
- 通过ADF检验验证了标准普尔500指数波动性和新闻情绪分数的平稳性,以确定它们适合进行格兰杰因果关系检验。
-
采用回归模型预测标准普尔500指数的百分比变化(记为∆SP500),基于金融新闻文章的情绪分数。
-
模型包括最多30天的情绪分数滞后,使用F检验来确定情绪分数是否“格兰杰导致”标准普尔500指数的波动性。
-
结果显示,在1、3、7、14和30天的滞后下,情绪分数“格兰杰导致”∆SP500,但∆SP500并未“格兰杰导致”情绪分数,表明情绪分数确实“格兰杰导致”波动性。
4.2 利用因果验证的情绪分数增强LSTM模型
-
实验设置和程序从收集新闻文章和历史股票数据开始,首先在每篇新闻文章中对每个句子进行情绪注释。
-
使用FinBERT预训练模型为每个句子分配情绪分数,然后将这些分数聚合以计算每日的总体情绪分数。
-
准备好市场波动性和聚合的情绪分数后,将它们输入到提出的LSTM模型
-
模型通过一个初始层接受输入,配置为处理数据序列,输入形状指定为时间步和维度,时间步设置为1,以单时间步增量处理数据,维度从1扩展到2,以容纳波动性和情绪分数作为特征。
-
模型编译使用Adam优化器和均方误差(MSE)作为损失函数,训练进行100个周期,批量大小为32。
-
训练完成后,测试数据集生成波动性预测,并与没有情绪分数的基线模型进行比较。
4.3 校准:嵌入增强的DAN 3模型
-
使用20 Newsgroups、Financial PhraseBank、AG News和FinSen数据集训练全局池化CNN网络和DAN 3模型。
-
数据集经过预处理,加载文本及其相应的标签,使用基本的英语分词器对文本进行分词,并从分词文本中构建词汇表。
-
在实现中,DAN 3文本分类模型中使用了GloVe(Global Vectors for Word Representation)嵌入。
-
文本通过向量化和填充到统一长度来适应不同长度的文本数据,确保每个输入模型的大小相同。
-
模型在这些数据集上使用交叉熵(CE)、AdaFocal、DualFocal和Focal Calibration Loss进行训练,使用20个周期,并用预期校准误差(ECE)和可靠性图进行测量。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。