1.本地部署DeepSeek
登录ollama(https://ollama.com/),点击网页中间的“Download”
弹出页面中继续点击“Download for Windows”
下载完成后进行软件安装
安装完成后,打开命令行输入ollama -v,如果返回版本号,表示安装成功。
打开ollama deepseek下载地址(https://ollama.com/library/deepseek-r1),选择合适的安装版本
模型对比如下,需要根据自己的电脑条件选择,一般家用电脑选择Deepseek-r1:7b或者Deepseek-r1:8b即可。
选好模型后,点击右侧命令复制按钮,复制模型下载命令
打开命令行,运行复制的安装命令即可安装
安装完成后就可以在命令行测试使用了:
这样我们在本地就已经部署好了DeepSeek,不过实话实说本地部署的蒸馏版本效果还是不如官方api的效果,如果不是有比较强的安全需要,可以配置api使用。
这个我们在安装好知识库后统一说明。
2.安装&配置本地知识库
登录AnythingLLM(https://anythingllm.com/desktop),选择下载Windows x64版本
选择合适的位置进行安装
安装完成后,进入AnythingLLM,在偏好设置页面,选择Ollama。
如果不需要连接本地部署的模型,可以直接使用其他模型的API,在这里选择对应模型也可以。
选择好Ollama后,下滑页面进行模型选择。
在模型选择完成后,对第一个工作区进行命名,这个工作区名称需要记住,在使用api连接时需要使用。
完成初始化的所有步骤后,进入主界面,可以点击工作区的上传箭头或是对话界面的“upload a document”进行文件上传。
在上传界面点击“Click to upload or drag and drop”位置,或是直接将文件拖入该区域,可以完成文件的上传。
文件上传完成后,选中文件,并且点击“Move to Workspace”将文件移动到工作区中。
下滑界面到底部,点击“Save and Embed”。这样上传的文件就可以在工作区的对话中访问到。
下来我们在工作区中测试下,可以在思考过程中看到调用了我们上传的文件。
3.配置Word接入
接入Word前,我们需要先获取AnythingLLM的api key。
点击左下角的扳手图标,进入设置。
在设置中选择“工具->API密钥”。在右侧界面“生成新的API密钥”。
弹出界面中点击“Create API key”。
生成API key后,点击“Copy API key”进行复制,保留好后,在VBA代码中填写。
打开Word,复制知识库调用代码,并修改代码中的AuthToken变量的值为刚才复制的API key即可。
另外需要注意API_URL中的/chat前的字段是工作区的名称,需要和自己新建的工作区的名称保持一致。
配置完成后,我们就可以在Word中使用,并且可以获取我们在知识库中保存的内容。
如果不是很在意数据安全,可以改用DeepSeek的API,这样可以获得更好的效果。通过在AnythingLLM的设置中修改LMM首选项即可。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。