把Llama 3蒸馏到Mamba,推理速度最高可提升1.6倍!而且性能不减,甚至表现比原始模型还要优异。
这是来自Together AI的新作,通过蒸馏将Transformer和Mamba模型结合到了一起,同时还为混合模型涉及了推理加速算法
提出Mamba架构的大神、FlashAttention作者Tri Dao,也参与了这一项目。
Together AI创始人兼CEO表示,Transformer和Mamba的混合,是未来大模型的一大发展方向。
将Transformer蒸馏进Mamba
在蒸馏正式开始之前,需要先进行从Transformer到线性RNN的初始化。
作者观察到,Transformer的注意力机制与RNN的计算之间存在一定的相似性。
因此可以将Transformer的注意力线性化,从而建立二者的联系。
利用这种对应关系,可以将预训练的Transformer模型的参数复制到Mamba模型中。
在完成参数初始化后,作者采用了一个三阶段的蒸馏流程进一步提升Mamba模型的性能,使其更好地学习Transformer的知识。
第一阶段是基于伪标签的蒸馏——使用预训练的Transformer教师模型在无标签数据上生成伪标签,然后让Mamba学生模型在这些伪标签上训练。
这一过程的损失函数结合了KL散度损失和交叉熵损失,分别用于模仿教师模型输出分布以及伪标签的拟合。
第二阶段是在指令数据集上进行的监督微调,使用带标签的指令数据集(如OpenHermes 2.5)进行训练。
最后一个阶段,是用人类反馈数据,通过基于奖励模型进行优化。
作者收集了人类对模型输出的反馈数据,然后据此构建一个奖励模型并使用 RL 算法(如 PPO)来优化模型在该奖励模型下的表现。
在8块80G A100 GPU上,每个混合模型的整个蒸馏过程,只需不到五天的时间。
通过以上的蒸馏过程,作者得到了Transformer-Mamba混合模型,之后又提出了Speculative Decoding(推测解码)算法来加速推理过程。
混合模型推理加速算法
推测解码算法的基本思想是使用一个轻量级的Draft模型来预测多个token,然后再用验证模型(Verifier)来验证这些预测。
这样可以显著提高解码的并行性,加速生成过程。
Draft模型通常是一个小的Transformer,根据当前的上下文预测出接下来的K个token。
对于预测出的K个token,Transformer层可以直接并行地处理这K个token,计算它们的隐状态;
Mamba层则需要按照顺序依次处理每个token,首先计算当前token的隐状态,并将其与之前的隐状态进行比较。
-
如果当前token是正确的,则将其添加到已接受的序列中,并更新最新的隐状态(但不保存中间状态)。
-
如果当前token是错误的,则停止处理后续token,并将最新的隐状态回退到上一个已接受的token处。
如果序列中的所有K个token都被接受,则将它们添加到输出序列中,并继续预测下一组token。
如果有token被拒绝,则从第一个被拒绝的token处截断预测序列,并返回初始步骤从该位置开始重新预测。
Llama 3推理速度提升1.6倍
测试结果表明,混合模型在单论(AlpacaEval)和多轮(MT-Bench)聊天对话任务上与Llama-3相当甚至更优。
并且还对不同混合比例的模型表现进行了测试,发现其中按照1:1比例混合的模型表现最佳。
在零样本的通用 NLP 任务评测中,混合模型的平均成绩优于同等规模的RNN模型。
在少样本的OpenLLM Leaderboard榜单上,混合模型的表现与最好的开源RNN模型相当,并在GSM8K和CRUX任务上超过了对应的Instruct模型。
除了模型性能,作者也对推测解码算法带来的加速效果进行了测试。
首先测试的是纯Mamba模型,结果在2.8B和7B的模型上,相比原来的解码方式,推理速度提升了1.7-2.6倍。
进一步地,作者在蒸馏的Zephyr和Llama混合模型上进行了测试,结果Zephyr混合模型的推理速度提升了1.8倍以上,Llama混合模型也有1.6倍左右的加速。
论文地址:
https://www.together.ai/blog/the-mamba-in-the-llama-distilling-and-accelerating-hybrid-models
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。