Llama版o1来了,来自上海AI Lab,强化学习代码已开源,基于AlphaGo Zero范式

复刻OpenAI o1推理大模型,开源界传来最新进展:

LLaMA版o1项目刚刚发布,来自上海AI Lab团队。

简介中明确:使用了蒙特卡洛树搜索,Self-Play强化学习,PPO,以及AlphaGo Zero的双重策略范式(先验策略+价值评估)。

在2024年6月,o1发布之前,团队就开始探索蒙特卡洛树搜索提高大模型数学能力,积累了一些关注。

这次最新开源代码,也在开发者社区引起热议。

OpenAI o1系列发布后,团队开始升级算法,专注于数学奥赛问题,作为OpenAI草莓项目的开源版本。

10月初,团队上传新论文,使用成对优化(不直接给出绝对分数,而是比较两个答案的相对优劣)提高Llama模型数学奥赛能力。

在最难的AIME2024基准测试30道题中,原版LLaMA-3.1-8B-Instruct做对2道,优化后做对8道,超过了除o1-preview和o1-mini之外的其他商业闭源方案。

10月底,团队宣布在基于AlphaGo Zero架构复刻OpenAI o1的努力中取得了重大进展:

已成功使模型在学习过程中通过与搜索树交互获得高级思维能力,无需人工标注

不到一周时间,项目便开源了。

LLaMA版o1最新进展

目前已开源内容包括:预训练数据集、 预训练模型、强化学习训练代码

OpenLongCoT-Pretrain数据集,包含10万+条长思维链数据。

每条数据包含一个完整的数学问题推理过程,包含思考内容和评分结果。

例如一个几何问题,包含了问题描述、图形坐标、计算过程和结论推导等完整的推理链路,以及对各个推理步骤的批评和验证内容,对推理过程进行评价和指导。

在此数据集继续预训练后,模型可读取和输出类似o1的长思维链过程。

预训练代码尚未发布,目前推荐使用LLaMaFactory代替。

有意思的是虽然项目名为LLaMA-O1,但目前官方给的预训练模型基于谷歌Gemma 2。

目前在预训练模型基础上,可以继续进行强化学习训练,从代码中可以看出训练过程如下:

  • 使用蒙特卡洛树搜索进行自我对弈(self-play)以生成经验

  • 将经验存储在优先经验回放缓冲区中

  • 从缓冲区采样批次数据进行训练

  • 更新模型参数和经验优先级

论文中也给出了训练过程的图示。

同时训练代码中使用了以下关键技术点:

  • 使用LoRA进行参数高效微调

  • 使用PPO算法作为策略优化方法

  • 实现了GAE(Generalized Advantage Estimation)算法用于计算优势函数

  • 使用优先经验回放提高训练效率

最后,LLaMA-O1代码发布在名为SimpleBerry的GitHub账号下,并没有特别简介,还比较神秘。

其他与SimpleBerry有关的账号和官网中,只能看出性质是一个研究实验室,也并未透露更多研究方向信息。

其他o1复刻项目进展

除LLaMA-O1之外,另一个公开进展的o1复刻项目O1-Journey来自上交大团队。

团队在十月初发布了第一份进展报告,其中介绍了创新Journey Learning范式,以及第一个成功将搜索和学习整合到数学推理中的模型。

O1-Journey核心开发团队主要由上交大大三、大四本科生,以及上交大GAIR实验室(生成式人工智能研究实验室)的一年级博士生组成。

指导教师包括上交大副教授刘鹏飞,姚班校友、斯隆奖得主李远志等。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值