2025 AI Agent(多智能体系统)评估和优化指南

对于Agent 产品而言,评估和优化是非常重要的两项工作,直接决定了产品的好用程度。这两项工作在实际工作过程中占比非常高,举个简单的例子,可能团队用 2 周的时间就把基本框架搭起来了,后面的评估和优化工作可能会做两个月才弄完。这一篇,我们主要从评估流程,评估指标,评估工具和优化方法四个方面,来看一下如何对 Multi-Agent System(多智能体系统)进行评估和优化。

摘要

1 评估流程:从数据集中取样本,输入到应用,获得输出,然后由评估器(可结合真实答案)对输出进行打分,从而完成对产品的评估。

2 评估指标:主要介绍了任务成功率,正确的函数调用使用,协作指标等。

3 评估工具:介绍了多种多Agent系统(MAS)的评估工具,包括:DeepEval,LangSmith,MultiAgentBench等**。**

4 优化方法:从工程和算法两个角度介绍了多 Agent 系统的优化方法。

评估流程

首先,我们简单来看一下评估的过程。

img

首先从数据集中取样本,输入到应用,获得输出,然后由评估器(可结合真实答案)对输出进行打分,从而完成对产品的评估。

数据集(Dataset)中包含若干示例(Examples),这些示例将作为输入提供给应用(Application)。其中的“(Optional)”表示可以选择性地提供真实答案(或标注信息)等参考数据,以便评估器(Evaluator)在对比时使用。

应用(Application)接收数据集中的示例作为输入,执行完毕后,应用会输出相应的结果。

评估器(Evaluator)接收应用的输出,必要时还会对比“(Optional)”提供的真实答案或期望结果。最终,评估器根据对比结果给出一个分数(Score),用以量化和衡量应用的性能表现。

大体的流程就是这样,接下来我们再来扩展一下。

img

流程和我们之前说的其实一样,只是在这张图里对(1)数据集,(2)评估器,(3)任务,(4)评估落地形式,这四部分进行了拓展。

(1)数据集:数据集是评估流程的输入源,包含三类示例:

Developer curated:由开发者手动挑选并标注的样本,用于覆盖关键用例和边缘情况。

User‑provided:来自真实用户日志的输入(含用户反馈),反映产品在实际使用中的多样性与噪声。

LLM generated(Synthetic):由大型模型自动生成的示例,可用于快速扩充数据集、模拟稀有场景或进行压力测试。

(2)评估器:评估器负责对应用输出(Output)进行打分或判定,分为三种:

模型充当裁判,对比多个模型生成的结果,少数服从多数。

规则决策,对比生成是否符合规则。

人类评估,与真实数据对比。

(3)任务类型:一些场景的任务场景,包括 RAG 问答,chatbot 的对话,代码生成等。

(4)评估落地形式:评估可在不同环节、不同深度执行,以确保产品质量持续提升,主要有两种方法:

生产环境下评估。在生产环境流量上进行测试,以评估应用在运行条件下的性能。常用的方法包括,A/B 测试,人工在线评估,用历史流量评估。

部署前评估。在应用部署之前运行的单元测试或评估。常用的方法包括,单元测试,离线评估,成对比较。

评估指标

衡量 MAS 性能涉及多个指标,以全面评估准确性、效率和可扩展性

任务成功率

指标如精确匹配任务完成率用于评估 MAS 是否产生了正确的结果。例如,任务完成准确率可用于量化整体准确性**。在协作环境中,若涉及信息检索等任务,可能需要使用精确率/召回率**等指标。然而,在许多情况下,每个任务或查询的简单成功率已足够评估系统性能。

正确的函数调用使用

在 MAS中Agent会调用各种工具(函数)。一个关键指标是Agent是否针对特定问题调用了正确的函数或 API

工具成功率:衡量工具/API 调用是否达到了预期结果的比例。

函数调用评测:例如,Berkeley Function-Calling Leaderboard(BFCL) 通过提供任务及其期望的函数调用,检查Agent是否选择了正确的调用方式。

img

高级 BFCL 评测:包括多步场景和基于状态的指标(State-based Metrics),用于跟踪Agent在多次调用过程中是否能正确维护系统状态,从而评估函数调用的正确性。

可扩展性指标评估 MAS 的可扩展性通常需要调整Agent数量或任务数量,观察性能下降情况。关键指标包括:

吞吐量/延迟变化:随着Agent数量或任务数量的增加,吞吐量是否接近线性增长,延迟是否保持可接受水平。

任务分配准确性:衡量任务是否被正确分配给最合适的Agent,确保团队扩展时仍能高效运作。

通信开销:跟踪每个任务的消息数量,以防止新增Agent导致过多的协调成本,从而拖慢系统。

一个良好扩展性的 MAS 应该在增加Agent时,保持吞吐量接近线性增长,且系统协调成本不会急剧上升。

协作指标

MAS 还需要评估多 Agent 的协作情况,以确保输出具有连贯性,验证Agent间的协作是否顺畅。关键指标包括:

输出连贯性:衡量最终输出(如报告、计划)是否逻辑一致、统一连贯。可以采用人工评分自动化连贯性评分

协调成功率:检测Agent是否避免冲突(例如,两个Agent是否同时编辑同一文件,导致数据不一致)。

任务执行路径的匹配度:如果存在最优执行序列(Ground-truth Sequence),可以衡量 MAS 实际执行路径与最优路径的接近程度,尤其适用于规划类任务。

高质量的 MAS 需要保证其输出连贯性高、Agent协调顺畅,并且在执行复杂任务时能遵循最佳的行动序列

在实际应用中,这些指标并不是都要去评估的,要根据具体情况来看。

例如,在多Agent数据分析助手的案例中,可以同时跟踪以下关键指标:

准确性:Agent是否得出了正确的分析结论?

工具使用成功率:数据获取Agent是否成功检索到了所需数据?

延迟:Agent对用户请求的响应时间是多少?

可扩展性:系统是否能支持更多数据源或新增分析Agent?

通过关注多个指标,可以确保 MAS 不仅能提供正确的结果,同时具备高效性,并且能够扩展以应对更复杂的问题。

评估工具

评估 MAS 需要结构化的框架、基准测试和工具。研究人员和行业专家开发了多种评估框架,以系统化地测试 MAS 在不同场景下的表现

MultiAgentBench

img

MultiAgentBench 是一个MAS的综合基准测试,用于评估 MAS 在多种交互场景中的协作与竞争能力。MultiAgentBench不仅评估最终任务成功率,还衡量协作与竞争质量。采用里程碑式 KPI来细化评估。比如在一个协作研究任务中,它会设定中间里程碑(如:收集参考资料 → 起草章节 → 完成报告),并评估Agent在每一步的配合程度,确保团队整体协作效率。MultiAgentBench还会进行Agent协调协议评估,研究不同Agent通信拓扑(星型、链式、图结构)如何影响团队表现,同时还会评估不同****策略(如小组讨论)****对团队协作效率的影响。

相比单Agent评测,MultiAgentBench 提供了更全面的 MAS 评估,能够反映:最佳的Agent协作策略,最优的通信架构,多Agent系统的团队表现,而不仅仅是单个Agent的能力。

PlanBench

img

PlanBench 是一套**专门用于评估Agent规划能力的测试套件。**这个套件主要用评估以下几点:

生成有效计划:Agent能否制定合理、可执行的计划

优化能力:Agent找到的是高效路径还是仅仅是可行路径?

自适应能力:当条件变化时,能否重新调整计划

执行推理:Agent能否预测可能失败的步骤并做出调整?

假设一个Agent需要安排家具搬运,PlanBench 可能会进行如下测试:

基础测试:Agent是否能列出所有必要的搬运步骤,确保操作逻辑合理?

适应性测试:如果搬运卡车尺寸过小,Agent能否调整方案,例如安排额外车辆?(来源:《Mastering Agents: Evaluating AI Agents - Galileo AI》)

相比简单的任务执行评测,PlanBench 深入分析 MAS 的规划智能,以确定Agent是否真正理解任务,还是仅仅在复述训练样本。通过对计划质量、执行推理和适应能力的评分,PlanBench 让 MAS 规划智能的真实性和泛化能力一目了然

函数调用Benchmark

如前所述,**伯克利函数调用排行榜(BFCL)**是一个专门用于评估agent在工具使用和 API 调用方面的框架。它提供包含查询及预期函数输出的数据集,并监测Agent是否正确选择并调用相应的函数来解决查询问题。

BFCL 包含的关键指标包括:Agent在一系列 API 调用中保持状态的能力,以及是否能正确执行多步工具使用。

此类基准测试对于多Agent系统(MAS)尤为重要,因为这些系统依赖外部工具(如数据检索、计算等)。BFCL 的测试确保Agent能够处理真实世界的 API 使用模式。

行业评估工具

在实际应用中,工程师使用框架和库来捕获多Agent系统(MAS)的各项指标,用于记录和分析多Agent行为。

DeepEval :允许定义自定义的 MAS 相关指标,并可与 CI/CD 集成,实现持续测试。

TruLens :专注于可解释性,帮助调试Agent间的通信,并确保输出符合目标。

RAGas :针对检索增强生成(RAG)系统(适用于使用共享知识库的Agent),可跟踪答案准确性和上下文使用情况。

DeepCheck: 负责监控公平性和偏差,确保 MAS 进行任务分配或决策时不会出现不公正的倾向。

LangSmith:LangSmith 是一个用于调试、测试、监控和优化生产级大语言模型应用的平台,助力开发者高效迭代和部署 LLM 解决方案。

Langfuse:可以理解为开源版仿制的LangSmith。

Arize Phoenix:Arize Phoenix 是一个开源的可观测性工具,专为 AI 和 LLM 应用的实验、评估和故障排除而设计。它使 AI 工程师和数据科学家能够快速可视化数据、评估性能、追踪问题并导出数据以优化改进。

这一部分的GitHub 链接都附在了文末。

通过使用这些工具,团队可以持续评估 MAS 在关键指标上的表现,并及时发现问题,例如某个Agent过度占用资源或未能与其他Agent协调工作。

优化方法

优化多Agent系统意味着改进Agent的学习方式或设计,以在指标上表现更优。我们会从工程和算法两个角度来介绍一下优化方法。

工程

标准化通信协议

制定统一的通信标准和数据交换格式,确保各Agent之间信息传递清晰、准确,降低因格式不一致导致的调用错误。例如,可以参考一些成熟系统(如ROS等)的经验,借鉴其通信模块设计。

构建错误处理机制

引入专用的中间件或Agent管理系统,集中协调任务分配和工具调用,内置自动重试、回退和容错机制。这样当某个Agent调用工具失败时,可以自动捕获错误并进行补救,减少系统整体中断。

建立自动校验机制

设计统一的API接口供各个Agent调用工具,配合自动校验和反馈机制,确保调用过程中的参数正确、结果符合预期。此外,可采用日志记录与监控工具(如Arize Phoenix、Langfuse)实时跟踪工具调用过程,快速定位并修正错误。

利用分布式优化

采用分布式算法和并行计算方法,让各Agent在局部环境中独立执行任务后再进行汇总,从而减少因串行调用工具而导致的延迟和错误。这种方法也有助于缓解单个节点的负载压力,提高整体系统的响应速度和稳定性。

混合优化方法

使用混合多Agent系统,将多个优化求解器(如直接搜索方法和元启发式算法)集成到一个协调框架中。在这种系统中,每个求解器作为一个自主“Agent”运行,而调度器(或协调器)管理整个优化过程,在合作与竞争之间保持平衡。这种自适应切换策略可以减少不必要或错误的工具调用,因为系统能够动态选择当前最有效的方法。例如,一篇研究论文提出了一种用于混合优化的多Agent系统,其中不同类型的求解器同时处理给定问题,而调度Agent负责监督模型评估和求解器性能。这种协作优化方法可以最大限度地减少计算开销,并降低由于求解器不适用或调用错误导致的失败概率。

分布式与共识优化方法

另一种优化方式是分布式优化共识方法。在这些方法中,各个Agent共享局部信息(例如部分解或成本估计),从而使整个网络能够收敛到一个全局最优解。这种方法的优势包括:

提高协作效率:Agent间协调合作,避免重复计算,同时实现同步更新,减少中央控制的需求。

减少工具调用错误:Agent可以共享环境信息,避免基于过时或不完整数据进行决策,降低调用工具时出现错误的风险。

算法

**多Agent强化学习(MARL):**在 MARL 中,每个Agent通过获得奖励来学习策略,许多算法都是从单Agent强化学习中改编而来。核心挑战在于,Agent的动作会相互影响,因此学习过程需要考虑合作或竞争。例如,Q-learning 和策略梯度(policy gradient)方法都有多Agent版本。在合作环境中,可以为所有Agent提供一个全局奖励,以鼓励团队协作;而在竞争环境下,每个Agent则会最大化自身的奖励(例如游戏得分)。

img

OpenAI Five 在 Dota 2 中的应用 是另一个利用 多Agent强化学习(MARL)自我博弈(self-play) 进行优化的典型示例。该系统训练了一支由五个Agent组成的团队,使其在高度复杂的游戏环境中学会合作。

OpenAI 采用了塑造奖励,结合 胜负结果击杀游戏目标等因素,以激励团队协作。通过强化学习,Agent自发地学会了分工策略,例如:一个Agent承担支援角色,而另一个Agent负责进攻,这些策略完全是通过学习演化而来。

进化算法(Evolutionary Algorithms, EAs):进化算法受到自然选择的启发,用于优化Agent行为。与基于梯度的方法不同,EA 方法会维护一组Agent策略的种群,并通过迭代选择表现更优的策略,结合变异和交叉机制,形成策略。这一技术在多Agent环境中特别强大,因为它能够探索多样化策略,并帮助Agent跳出梯度方法可能陷入的局部最优。

混合进化算法(EA)+强化学习(RL):现代研究经常将进化算法强化学习相结合。RACE(Representation Asymmetry and Collaborative Evolution) 就是这样一个框架,它证明了进化算法可以在多Agent强化学习(MARL)的协作任务中发挥作用。该框架维护了一组多Agent团队的种群,这些团队与主强化学习训练并行进化。在特定时间点,RL 学习到的优秀行为会被注入种群,而进化出的优秀策略也会反馈到 RL 训练中

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值