Transformer再出新花样!斯坦福通过把Transformer与特征融合结合,实现了预测误差直降83.4%的显著效果!
主要在于:Transformer擅长捕捉长距离信息。而特征融合,则能够引入局部细节、不同层次的视觉特征等多样化的信息。当两者结合,模型便能同时兼顾全局和局部信息,从而提升准确性和泛化性能,并降低计算成本!
因此,其在各大顶会也备受青睐!像是CVPR上用于多光谱目标检测的CAFF-DINO模型;NeurIPS上的3D重建模型GTA……
Hybrid CNN-Transformer Feature Fusion for Single Image Deraining
内容:文章介绍了一种新型的轻量级混合CNN-Transformer特征融合网络,用于单图像去雨。该网络通过结合CNN和Transformer架构的优势,逐步地进行特征融合,以改善图像去雨的效果。CNN阶段利用退化感知的混合专家模块强调局部雨滴分布特征,而Transformer阶段则使用背景感知的视觉Transformer模块来补充图像的全局纹理恢复和结构保持。此外,文章还提出了一个交互式融合分支来进一步优化去雨结果,并通过广泛的评估证明了HCT-FFN的有效性和扩展性。
Fusion-Vital: Video-RF Fusion Transformer for Advanced Remote Physiological Measurement
内容:文章介绍了一种名为Fusion-Vital的新型生命体征监测模型,该模型通过结合视频和射频(RF)传感器捕获的深度RGB和RF特征来提高远程生理测量的性能。Fusion-Vital利用成对输入格式和基于Transformer的融合策略来有效地对齐和适应性地整合多模态特征,从而在动态场景下进行有效的特征融合。文章还基于一个新收集和发布的同步视频-RF传感器的远程生理数据集进行了全面实验,证明了融合方法在多个方面优于以往的单传感器基线。
RefMask3D: Language-Guided Transformer for 3D Referring Segmentation
内容:文章介绍了一个名为RefMask3D的模型,这是一个基于Transformer的语言引导的3D分割网络,用于处理3D场景中的指代表达分割任务。该模型旨在理解自然语言描述,并将其转化为3D空间中的精确分割掩码,从而实现对3D对象或区域的语义分割。简而言之,RefMask3D利用Transformer架构来桥接自然语言描述和3D视觉数据,以实现更准确的3D对象分割。
CAFF-DINO: Multi-spectral object detection transformers with cross-attention features fusion
内容:文章介绍了一种名为CAFF-DINO的多光谱目标检测Transformer模型,该模型通过交叉注意力特征融合技术,有效地结合了不同光谱数据,以提高目标检测的准确性和鲁棒性。简而言之,CAFF-DINO利用先进的Transformer架构和特征融合策略,优化了多光谱数据在目标检测任务中的性能。
Effective Image Tampering Localization via Enhanced Transformer and Co-attention Fusion
内容:文章提出了一个名为EITLNet的有效的图像篡改定位网络,该网络基于双分支增强型Transformer编码器和基于坐标注意力的特征融合构建。EITLNet设计了特征增强模块来提升Transformer编码器的特征表示能力,并通过坐标注意力基融合模块在多尺度上有效地融合RGB和噪声流特征。广泛的实验结果验证了该方案在各种基准数据集上达到了最先进的泛化能力和鲁棒性。代码将在GitHub上公开。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。