摘要:人工智能技术进步催生大参数人工智能天气预报模型,本研究探讨其演变,提出大型天气预报模型 “三大规则”,分析人工智能对数值天气预报变革能力,强调传统数值预报价值,探讨人工智能大气 - 海洋预报模型挑战,认为二者融合可改进预报,还以全球海浪预报模型为例展示如何利用大型天气预报模型。
研究背景:天气预报在气象学中地位关键,影响社会经济决策。20 世纪初现代数值预报奠基,后随技术发展进入数值天气预报时代,但仍面临诸多挑战。如今,计算科学进步和人工智能应用使天气预报领域发生变革,大型人工智能天气预报模型出现,引发对天气预报范式转变的思考。
研究意义:全面综述先进大型天气模型,明确其发展过程与能力局限,促进 “数据科学家” 和 “天气预报员” 合作,开发混合方法以满足大气和海洋科学需求。
资料与方法:介绍多个先进大型人工智能天气预报模型,包括 FourCastNet、Pangu - Weather 等,给出其相关信息。以 Transformer 结构构建海浪预测模型,阐述训练评估数据集、输入变量、模型结构及各部分作用。
研究结果:
-
多种大型人工智能天气预报模型出现,如 FourCastNet 等在预测精度和计算效率上表现优异,部分模型在 500hPa 位势高度和 850hPa 气温预测上超越传统模型。
-
人工智能模型改变数值天气预报在于精度提升和效率提高。精度方面,利用历史数据减少误差积累,拟合外推能力强;效率方面,相比传统数值天气预报计算资源需求小,能实现高分辨率集合预报且便于个人定制预报。
-
人工智能模型面临数据质量控制与同化、集合预报、物理信息引导神经网络设计、预测结果后处理等挑战,如依赖动态模型分析数据、初始状态扰动方案设计、物理原理表达、预测变量扩展和区域预测精度提高等问题。
-
构建的全球海浪预测模型基于 ERA5 数据集,经编码、注意力计算、卷积层处理等步骤预测海浪。在热带地区误差小,对台风引起强浪预测较好,与 ConvLSTM 模型相比,Transformer 模型训练容易且精度更高,使用不同风输入时,短期内海浪预报可行,但 FengWu 风数据长期预报有高频细节损失。
研究结论:人工智能天气预报模型发展潜力大,“三大规则” 下的模型有望变革天气预报方法,提高准确性、成本效益和计算效率。与传统数值模型共存互补重要,二者融合是未来方向,如 Neural GCM 模型所示,融合可提升预测能力,为天气和气候变化预测提供更可靠框架。
图 1:500hPa 位势高度和 850hPa 温度的确定性头条记分卡。显示均方根误差和异常相关系数,颜色表示与 IFS - HRES 基线的差异百分比。
图 3:视觉 Transformer 模型在不同预报时效下预测的有效波高、平均波周期和平均波向的均方根误差。
图 4:观测到的以及不同预报时效与西北太平洋台风 “梅花” 接近相关的预测波。
图 5:基于不同模型和风输入的技能比较。
图 6:大型人工智能模型与动态模型可能的集成以改进海洋 - 大气预报的示意图。
这篇论文聚焦于大型人工智能模型在气象领域的应用,其创新点在于提出 “三大规则” 来界定大型天气模型,为模型发展提供框架。同时深入分析人工智能模型对数值天气预报的变革,探讨其与传统模型的融合方向,这对气象预报领域发展具有重要意义。通过具体模型实例和全球海浪预测模型的构建,展示了人工智能在气象预报中的实际应用效果和潜力,为气象学家和相关研究人员提供了有价值的参考。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。