第一个问题
在资源有限的情况下,个人进行数学相关学习和教学研究,应该选择哪款模型进行部署?
答:
DeepSeek-R1-Distill-Qwen-1.5B 和 DeepSeek-R1-Distill-Qwen-7B 是专门针对数学领域优化的模型。如果资源允许,建议优先部署 DeepSeek-R1-Distill-Qwen-7B,因为它的性能更强;但如果资源有限,部署 DeepSeek-R1-Distill-Qwen-1.5B 也完全能够满足日常的学习和教学研究需求。
第二个问题
在资源有限的情况下,个人进行编码相关工作,最小应该部署哪款模型?
答:
如果仅进行基础的编码工作,最小可以部署 DeepSeek-R1-Distill-Qwen-7B。如果条件稍好,建议部署 DeepSeek-R1-Distill-Qwen-14B。如果预算充足,那就直接选择 DeepSeek-R1-Distill-Qwen-32B,能力性能更为优越。
第三个问题
企业部署时,使用4090显卡最少需要几块?部署时有哪些需要注意的坑?
答:
如果使用 vLLM 部署原始的 DeepSeek-R1-Distill-Qwen-32B(约70GB),至少需要 4 块 4090 显卡。具体部署命令如下:
CUDA_VISIBLE_DEVICES=0,1,2,3 vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --tensor-parallel-size 4 --max-model-len 32768 --enforce-eager
注意事项:
-
如果在 GPU 宿主机上采用 Conda 管理环境进行部署,只需安装 vLLM 的最新版即可。
-
如果在 GPU 宿主机上通过 Docker 进行部署,Docker中除了安装 vLLM 最新版外,最需要注意的是 Docker 内的 CUDA 版本必须与宿主机的 CUDA 版本一致,并且不大于宿主机的版本。例如:如果宿主机 CUDA 版本为 12.4,则 Docker 内的 CUDA 版本应为 12.0 至 12.3。
-
该命令部署后启动的是标准的 OpenAI API。
第四个问题
Ollama 可以在企业部署中使用吗?
答:
可以使用。与此同时,Ollama 对 DeepSeek-R1 进行了瘦身,非常适合企业部署 DeepSeek-R1-Distill-Qwen-32B(瘦身版,20GB)。使用一块 4090 显卡即可启动。
了解模型的大小
将DeepSeek-R1原始模型和Ollama瘦身后模型列出,可供大家参考。
DeepSeek-R1各模型原始大小:
DeepSeek-R1模型参数:671B(6710亿),模型大小:约720G。
DeepSeek-R1-Distill-Qwen-1.5B模型参数1.5B(15亿),模型大小:约4G
DeepSeek-R1-Distill-Qwen-7B模型参数7B (70亿),模型大小:约15G
DeepSeek-R1-Distill-Llama-8B模型参数8B(80亿),模型大小:约16G
DeepSeek-R1-Distill-Qwen-14B模型参数14B(140亿),模型大小:约30G
DeepSeek-R1-Distill-Qwen-32B模型参数32B(320亿),模型大小:约75G
DeepSeek-R1-Distill-Llama-70B模型参数70B(700亿),模型大小:约140G
Ollama瘦身后模型大小:
DeepSeek-R1模型参数:671B(6710亿),模型大小:约404G。
DeepSeek-R1-Distill-Qwen-1.5B模型参数1.5B(15亿),模型大小:约1.1G
DeepSeek-R1-Distill-Qwen-7B模型参数7B (70亿),模型大小:约4.7G
DeepSeek-R1-Distill-Llama-8B模型参数8B(80亿),模型大小:约4.9G
DeepSeek-R1-Distill-Qwen-14B模型参数14B(140亿),模型大小:约9G
DeepSeek-R1-Distill-Qwen-32B模型参数32B(320亿),模型大小:约20G
DeepSeek-R1-Distill-Llama-70B模型参数70B(700亿),模型大小:约43G
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。