标题:
CIDGMed:基于因果推断的双粒度药物推荐方法
论文链接:
https://doi.org/10.1016/j.knosys.2024.112685
论文导读:
药物推荐旨在整合患者的历史健康记录,为患者提供准确和安全的药物组合。现有方法往往无法深入探索疾病/治疗方案和药物之间的真实因果关系,从而导致推荐偏差。并且,在药物表示学习中,不同粒度药物的信息之间的关系——粗粒度(药物本身)和细粒度(分子结构)不能有效地整合,导致表示学习的偏差。为了解决这些限制,该文章提出了基于因果推理的双粒度药物推荐方法(CIDGMed)。该方法利用因果推理来揭示疾病/治疗方案和药物之间的关系,从而增强推荐的合理性和可解释性。通过将粗粒度药物效果与细粒度分子结构信息相结合,CIDGMed 提供了药物的综合表示。此外,该研究在预测阶段使用偏差校正模型进一步细化推荐,确保准确性和安全性。
1 引言
随着社会的进步和人口的增长,医疗系统正面临着前所未有的压力,包括医疗资源的不平衡、疾病诊断和治疗的复杂流程,这些已成为医疗领域突出的问题。在此背景下,基于人工智能的药物推荐系统作为关键组成部分应运而生,为医疗领域带来了新希望。与传统的人工方法相比,这种基于患者数据的系统能够快速响应并做出决策,从而有效缓解医疗资源短缺的问题。并且通过考虑患者的个体特征、病史和当前健康状况,药物推荐系统可以提供准确、安全的药物组合,在缓解医疗压力和提升治疗效果方面发挥着重要作用。
与其他领域的推荐系统相比,药物推荐面临重大的挑战,这些挑战阻碍了其他推荐系统方法的直接应用。这些挑战主要体现在以下两个方面:首先药物推荐涉及到各种医疗概念(药物、疾病、治疗方案)之间的复杂关系,以及药物本身所具有的大量化学和分子结构知识;并且在评估推荐性能时,药物推荐不仅关注准确性,还特别注重安全性问题。这是因为药物间相互作用(DDI)可能会对患者产生副作用。
早期的药物推荐系统主要关注分析患者的当前健康状况,而忽略了患者的医疗历史。随后的一些研究开始认识到纵向医疗记录的重要性,并基于时间序列进行分析,来对患者的历史记录进行建模。尽管这些研究在一定程度上提高了药物推荐的准确性,但它们忽视了药物推荐的安全性。因此一些研究将药物间相互作用作为影响安全性的主要因素,并致力于降低这些相互作用的影响,增强药物推荐系统的安全性。尽管现有研究取得了显著成果,但推荐结果中仍然存在相当大的偏差,主要源于以下两个方面:第一点为疾病、治疗方案与药物关系不清晰。先前基于共现的研究假设高共现率意味着疾病与药物之间存在直接关系或影响。然而这些研究在处理多疾病问题时,仅依赖共现来确定疾病与药物之间的关系,未能识别其明确的因果关系。这种偏差可能通过反馈被放大,进一步影响推荐的准确性和安全性。第二点为双粒度信息未整合。在药物推荐研究中,主要有两种方法,一种是直接从数据中学习药物的粗粒度表示,另一种是将药物映射到各个分子,并将其作为药物本身的替代,强调分子(细粒度)层面的重要性。一方面,仅使用粗粒度信息无法捕获化学和分子结构信息,难以识别具有类似化合物结构的药物,也难以分析药物间相互作用。而另一方面,仅使用细粒度信息虽然可以提供详细的化学信息,但药物推荐的最终任务是推荐整个药物,而不仅仅是单个分子,这可能会在训练过程中引入噪声,影响模型的稳定性和最终效果。然而,目前的方法通常只关注药物的粗粒度层级或细粒度层级,未能有效整合两种粒度的信息,这导致表示学习和推荐结果中的偏差。
为了应对上述局限性,该文章设计了一种基于因果推断的双粒度药物推荐方法,称为 CIDGMed。该方法引入因果推断技术,以揭示疾病、治疗方案与药物之间的因果关系,从而增强药物推荐的合理性和可解释性。该文章还提出了一种双粒度融合方法,在粗粒度层级上,学习整个药物的作用;在细粒度层级上,从分子结构中挖掘更丰富的关系。通过引入偏差校正模型,采用后处理干预方法。在预测阶段使用建立的因果关系对生成的推荐进行进一步调整,从而提高模型的准确性和安全性。
2 模型
2.1 CIDGMed
该图展示了论文的模型CIDGMed,该模型主要由三个部分组成,旨在通过三个不同的阶段挖掘和使用各类医学实体之间的因果关系,以实现个性化的药物推荐。
首先,在关系挖掘阶段,模型从电子健康记录(EHR)中提取患者信息(即疾病、治疗和药物)。通过因果发现,模型学习这些医学实体之间的因果关系,并为每个患者构建个性化的因果图。此过程包括构建因果效应矩阵Mdm和Mpm,它们分别表示疾病/治疗方案与药物之间的关系。接下来,在表征学习阶段,该研究参考药物字典,建立每种药物与其分子组成之间的映射关系。之后,采用在关系挖掘阶段构建的因果效应矩阵(基于药物层面的粗粒度关系),将分子与药物之间的关系以及分子之间的关系(基于分子层面的细粒度关系)进行整合,形成一种双粒度表征信息传递方法。这些表征帮助模型更精确地分类和聚合因果图中的医学实体,从而形成一个访问级别的详细表征 𝐡𝑣。通过结合患者的历史数据,最终得出药物推荐的概率 𝑃(M)。最后,在偏差校正阶段,根据初始的因果矩阵 Mdm和Mpm调整每个药物的概率,以校正模型训练过程中产生的偏差,从而推荐既有效又安全的药物组合。
3 实验
数据集:MIMIC-III,MIMIC-IV
评价指标:DDI,Jaccard,F1,PRAUC
Baseline:ECC,RETAIN,GAMENet,SafeDrug,MICRON,COGNet,MoleRec,CausalMed
3.1性能比较:
4 结论
该文章介绍了药物推荐方法CIDGMed。通过应用因果推理,CIDGMed揭示了粗粒度和细粒度级别的疾病/治疗方案和药物之间的因果关系,实现了双粒度特征融合。此外,CIDGMed 在模型推荐期间采用了偏差校正。通过对公开的临床数据集进行一系列严格的实验,该模型显著提高了药物推荐的准确性和安全性。此外,案例研究分析进一步验证了 CIDGMed 的合理性。总之,结果充分证明了该方法在准确性、安全性、时间效率和合理性方面的优越性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。