Ollama + DeepSeek + Dify 打造企业级知识库的“超级大脑”

直接上干货。

1、安装ollama:

从官网下载安装包:https://ollama.com/download/windows

2、安装模型:

ollama run deepseek-r1:1.5b
模型版本模型大小(GB)GPU显存(GB)内存(GB)硬盘容量(GB)备注
1.5B1.1485
7B4.7121610
8B4.9163215
14B9246430
32B204812860
70B4380256120
671B(MoE)4044x A100 GPUs(320GB VRAM)512500

3、安装dify,可参考以前的文章:

https://mp.weixin.qq.com/s/QB3OMOLQvnEhZDz5hApXIA

4、进入dify的模型供应商,安装ollama

img

5、添加模型

img

6、配置模型参数,可参考官方教程:

https://docs.dify.ai/zh-hans/development/models-integration/ollama

img

7、配置系统模型

img

8、如果一切正常,到此整个环境就配置完成了,接下来就可以在dify上创建企业自己的知识库,然后创建应用并引用企业知识库,就可以对外提供服务了。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 比较OllamaDeepSeekDify的特点及其在IT领域中的应用场景 #### Ollama特点与用途 Ollama是一个专注于简化机器学习模型部署流程的平台,旨在让开发者能够更便捷地构建、训练并发布自己的AI应用程序。通过集成多种先进的自然语言处理技术以及优化后的基础设施支持,该平台显著降低了创建高质量对话系统的门槛[^1]。 #### DeepSeek特性概述 作为一款大型预训练语言模型,DeepSeek具备强大的文本理解和生成能力,在多个下游任务上表现出色。特别是其R1版本拥有高达14亿参数量级的大规模神经网络架构设计,这使得它能够在诸如问答系统、聊天机器人等领域提供更为精准的服务响应质量[^2]。 #### Dify功能描述 Dify则定位于帮助企业用户快速搭建专属的知识库解决方案。借助于直观易用的操作界面及丰富的API接口资源,即使是没有深厚编程背景的技术人员也能轻松完成从数据导入到服务上线的一系列操作。此外,还提供了详尽的帮助文档指导使用者进行定制化的二次开发工作[^3]。 #### 使用场景对比分析 - **对于希望打造个性化客服体验的企业而言**:可以选择将Ollama用于前端交互逻辑的设计实现部分;而把基于DeepSeek构建起来的强大语义解析引擎作为后台支撑组件接入整个服务体系当中;最后再利用Dify来管理维护内部积累下来的业务资料档案。 - **针对那些想要开展大规模自动化运维作业的数据中心来说**:可以考虑采用由上述三项核心技术共同组成的综合型方案——即先依靠Ollama定义好各类异常告警事件对应的处置预案模板;接着运用经过微调适配过的DeepSeek实例负责实时监控日志流信息并触发相应措施执行动作;最终凭借Dify所特有的高效检索机制保障所有历史记录都能被迅速定位查询出来以便后续审计复查之需[^4]. ```python # 示例代码片段仅作示意用途,并不构成实际可运行程序的一部分 def integrate_ollama_deepseek_dify(): ollama_config = {"interaction_design": "customized"} deepseek_model_path = "/path/to/deepseek/model" dify_knowledge_base_dir = "./knowledge_bases" # 假设这里是具体的集成逻辑... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值