RAG最佳实践:一篇让你不再迷茫的指南

RAG(检索增强生成)流程复杂,涉及多种子模块和方法组合——究竟哪种方案才是最佳实践?

🧩 RAG典型流程拆解

⚙️ 完整流程如图所示

None

1️⃣ 查询分类:判断是否需要检索(省时间!)
2️⃣ 检索:用语义相似度找相关文档
3️⃣ 重排序:让最相关的文档排到前面
4️⃣ 重组:调整文档顺序优化LLM输入
5️⃣ 摘要:压缩冗余信息,提升生成效率
(还涉及分块策略、嵌入模型、向量数据库等关键选择)

💡 我的真实想法:RAG不是简单“检索+生成”,每个模块的细节设计都会显著影响最终效果。

✅ 最佳实践逐模块解析

1️⃣ 查询分类

None

❗️ 为什么重要?
LLM本身具备一定知识,盲目检索会增加延迟。论文将任务分为15类,自动判断是否需要检索:

✅ 无需检索:用户提供完整信息的任务(如“翻译这句话”)
❗️ 需要检索:涉及模型未知知识(如“2023年诺贝尔奖得主是谁?”)
⚙️ 实现方案:训练一个分类器,准确率高达95%!

None

2️⃣ 分块策略

None

三种分块方式对比:

句子级分块(推荐✔️):平衡语义完整性与效率
语义分块(LLM划分):更精准但耗时
Token分块(简单但可能割裂语义)
🧠 关键发现:

块大小:175 token的小块召回率高,512 token的大块上下文更丰富 重叠20 token可避免信息断裂

3️⃣ 检索优化

None

三大黑科技:

HyDE:用LLM生成“伪文档”增强检索(效果最佳🌟)
混合检索:结合稀疏检索(BM25)和密集检索(嵌入向量)
查询重写/分解:让模糊提问变精准
⚡️ 推荐方案:HyDE + 混合检索(但纯混合检索性价比更高)

4️⃣ 重排序与摘要

None

重排序:monoT5综合表现最佳,TILDEv2适合快速实验
摘要:Recomp碾压其他方案,但会牺牲些许延迟
📌 我的私藏技巧:尝试“逆向重组”(Reverse Packing),把关键信息放在输入的开头或结尾——LLM更容易捕捉重点!

🏆 两种推荐方案

根据场景需求二选一:

模块高性能方案均衡方案
检索HyDE + 混合检索纯混合检索
重排序monoT5TILDEv2
重组ReverseReverse
摘要RecompRecomp

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 构建RAG系统初学者指南 #### 定义RAG系统 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合了密集向量索引和自然语言处理模型的技术,用于提高文本生成的质量和准确性。通过利用外部知识库中的信息来补充训练数据集的信息不足之处。 #### 准备工作环境 为了从头开始创建一个简单的RAG系统,首先需要安装必要的软件包并设置开发环境。对于Python用户来说,可以依赖Hugging Face Transformers库以及Faiss或其他相似的矢量化搜索引擎来进行实现[^2]。 ```bash pip install transformers faiss-cpu datasets torch ``` #### 数据收集与预处理 构建有效的RAG应用之前,获取高质量的数据源至关重要。这些资源可能包括但不限于网页抓取的内容、百科全书条目或是特定领域内的文档集合。接着要对原始素材执行清洗操作去除噪声,并将其转换成适合后续使用的格式。 #### 创建语料库索引 一旦拥有了经过清理后的文本片段列表,则可以通过编码器将它们映射到高维空间里的稠密表示形式——即所谓的嵌入(embeddings),之后再把这些嵌入存储在一个高效的近似最近邻(Near Neighbor Search,NNS)结构里以便快速查找最相关的项。 ```python from sentence_transformers import SentenceTransformer import numpy as np import faiss # 使用预训练的语言模型作为编码器 encoder = SentenceTransformer('all-MiniLM-L6-v2') # 假设有如下一些句子组成的语料库 corpus_sentences = ["Example document one.", "Another example text."] # 获取每篇文档对应的embedding embeddings = encoder.encode(corpus_sentences) # 初始化FAISS索引并向其中添加所有的embeddings dimensionality = embeddings.shape[1] index = faiss.IndexFlatL2(dimensionality) index.add(np.array([emb.tolist() for emb in embeddings])) ``` #### 集成查询接口 最后一步就是设计能够接收输入问题并将之转化为潜在匹配答案的过程。这通常涉及到先计算询问字符串相对于整个数据库内各个项目的相似度得分;随后挑选出排名靠前的结果返回给调用方。 ```python def retrieve_top_k(query: str, k=5): query_embedding = encoder.encode([query]) distances, indices = index.search( np.array(query_embedding).astype("float32"), k=k ) top_results = [(distances[0][i], corpus_sentences[idx]) for i, idx in enumerate(indices[0])] return sorted(top_results, key=lambda x:x[0]) print(retrieve_top_k("Find me something interesting")) ``` 以上代码展示了如何基于已有的工具链搭建起基本框架,在此基础上还可以进一步探索优化策略比如微调编码组件或者引入更复杂的评分机制等方法提升性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值