RAG不需要切块向量化了?通过PageIndex构建Agentic RAG

你是否对长篇专业文档的向量数据库检索准确性感到失望?传统的基于向量的RAG系统依赖于语义相似性而非真正的相关性。但在检索中,我们真正需要的是相关性——这需要推理能力。当处理需要领域专业知识和多步推理的专业文档时,相似度搜索常常不尽人意。

基于推理的RAG提供了更好的选择:让大语言模型能够思考推理,找到最相关的文档部分。受AlphaGo启发,Vectify AI提出使用树搜索来执行结构化文档检索。

***PageIndex*是一个文档索引系统,它从长文档构建搜索树结构,为基于推理的RAG做好准备。

Vectify AI开发。

PageIndex是什么

PageIndex能将冗长的PDF文档转换为语义树结构,类似于*“目录”*但专为大语言模型(LLMs)优化。 它特别适用于:财务报告、监管文件、学术教科书、法律或技术手册,以及任何超出LLM上下文限制的文档。

主要特点

  • 层次树结构
    让大语言模型能够逻辑性地遍历文档——就像一个智能的、为LLM优化的目录。
  • 精确页面引用
    每个节点都包含其摘要和开始/结束页面的物理索引,实现精准检索。
  • 无需人为分块
    不使用任意分块。节点遵循文档的自然结构。
  • 适用于大规模文档
    设计用于轻松处理数百甚至上千页的文档。

PageIndex格式

以下是输出示例。查看更多示例文档生成的树结构

...
{
  "title": "金融稳定性",
  "node_id": "0006",
  "start_index": 21,
  "end_index": 22,
  "summary": "美联储...",
  "nodes": [
    {
      "title": "监测金融脆弱性",
      "node_id": "0007",
      "start_index": 22,
      "end_index": 28,
      "summary": "美联储的监测..."
    },
    {
      "title": "国内和国际合作与协调",
      "node_id": "0008",
      "start_index": 28,
      "end_index": 31,
      "summary": "2023年,美联储与..."
    }
  ]
}
...

img

其实看到这里,我们会发现RAG之前很多框架或者算法都有类似的思想:

  • 例如LlamaIndex的Node实现
  • 比如Raptor的层级聚类
  • 还有Mineru的PDF转换生成Markdown,然后我们可以解析成类似具有章节信息的json数据

那PageIndex的亮点在哪里呢,其实在最后一部分“使用PageIndex进行基于推理的RAG”的实现,相比之前的Advanced和Modular RAG,Agentic RAG更加智能,接着我们往下看怎么实现的?

使用方法

按照以下步骤从PDF文档生成PageIndex树结构。

1. 安装依赖项

pip3 install -r requirements.txt

2. 设置OpenAI API密钥

在根目录创建一个.env文件并添加你的API密钥:

CHATGPT_API_KEY=你的openai密钥

3. 对PDF运行PageIndex

python3 run_pageindex.py --pdf_path /path/to/your/document.pdf

你可以通过额外的可选参数自定义处理过程:

--model                 使用的OpenAI模型 (默认: gpt-4o-2024-11-20)
--toc-check-pages       检查目录的页数 (默认: 20)
--max-pages-per-node    每个节点的最大页数 (默认: 10)
--max-tokens-per-node   每个节点的最大token数 (默认: 20000)
--if-add-node-id        添加节点ID (yes/no, 默认: yes)
--if-add-node-summary   添加节点摘要 (yes/no, 默认: no)
--if-add-doc-description 添加文档描述 (yes/no, 默认: yes)

云API (测试版)

不想自己部署?试试Vectify AI的PageIndex托管API。托管版本使用Vectify AI自定义的OCR模型更准确地识别PDF,为复杂文档提供更好的树结构。 在这个表单留下你的邮箱,免费获得1,000页处理额度。

img

案例研究:Mafin 2.5

Mafin 2.5是一个专为财务文档分析设计的最先进基于推理的RAG模型。它基于PageIndex构建,在FinanceBench基准测试中达到了惊人的98.7%准确率——显著优于传统的基于向量的RAG系统。

img

PageIndex的分层索引使得能够精确导航和提取复杂财务报告(如SEC文件和财报披露)中的相关内容。

👉 查看完整基准测试结果,了解详细比较和性能指标。

使用PageIndex进行基于推理的RAG

使用PageIndex构建基于推理的检索系统,无需依赖语义相似度。非常适合需要细微区分的领域特定任务。

🔖 预处理工作流示例

  1. 使用PageIndex处理文档,生成树结构。
  2. 将树结构及其对应的文档ID存储在数据库表中。
  3. 将每个节点的内容存储在单独的表中,通过节点ID和树ID进行索引。

🔖 基于推理的RAG框架示例

  1. 查询预处理:
    • 分析查询以确定所需知识
  2. 文档选择:
    • 搜索相关文档及其ID
    • 从数据库获取相应的树结构
  3. 节点选择:
    • 搜索树结构以识别相关节点
  4. LLM生成:
    • 从数据库获取所选节点的相应内容
    • 格式化并提取相关信息
    • 将组装的上下文与原始查询一起发送给LLM
    • 生成有依据的回答

🔖 节点选择的示例提示

prompt = f"""
给你一个问题和一个文档的树结构。
你需要找出所有可能包含答案的节点。

问题: {question}

文档树结构: {structure}

请用以下JSON格式回复:
{{
    "thinking": <关于在哪里寻找的推理过程>,
    "node_list": [node_id1, node_id2, ...]
}}
"""

看到合理我们自然明白了,PageIndex不需要切块向量是因为通过将文档转换为节点,然后用大模型进行选择,之前RAG是检索+排序=现在的LLM Judge。

同时这个问题就是,当多文档或者文档篇幅比较多的时候,LLM去做选择成本比较高的。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值