当销售部喊出"业绩增长15%“,财务部却坚称"只有8%”。
会议室里争论不休,时间流逝,竞争对手已经抢占先机。
你不禁自问:
明明砸了千万建设数据系统,为何企业依然深陷数据内耗?
数据迷宫:企业正在耗尽的三大"隐形资产"
企业内耗看不见摸不着,却实实在在吞噬生产力。就像一场无声的暗战,表面风平浪静,内里已千疮百孔。
“今天我们讨论的是去年12月的数据还是今年1月的数据?
”——销售总监皱着眉头问道。
会议室里氛围凝固,又一次陷入拉锯战。数据混乱就像无形的黑洞,悄悄吞噬企业效率。
一家制造企业调研显示:超过30%的数据存在缺失或错误,管理层90%的会议时间在争论数据而非讨论策略。
"我需要请教一下老李这个问题怎么处理,他前年处理过类似情况。
"一位新入职员工抓耳挠腮。知识孤岛正吞噬企业的第二份隐形资产——集体智慧。
调研显示:新人独立工作需3个月,专家30%工作时间在重复回答同样问题。这种重复造轮子的模式,每年浪费企业数百万成本。
产品经理疲惫地盯着屏幕:"我们已经生成了20页分析报告,老板看完只问了一句’所以我们应该怎么做?'"决策低效是第三大内耗陷阱。
拥有再多数据仪表盘,没有转化为决策的能力,企业依然在迷雾中前行。
核心问题不是企业缺数据,而是缺乏将数据转化为知识
,再转化为决策的能力。这正是"智能决策闭环"的关键。
三角突围:构建企业数据智能体
智能决策闭环犹如一座三角金字塔,三个支点缺一不可,相互支撑,形成企业的"数据智能体"。
第一支点:数据治理——给数据"立规矩"
某零售企业的供应链总监曾抱怨:"同样是库存数,系统A显示3000台,系统B却显示3600台,这600台差距谁能解释?"数据混乱正是内耗之源。
数据治理就是给数据"立规矩
":
首先统一数据语言,建立企业数据字典,明确每个指标的口径。如"销售额"必须明确定义为"含税金额减去退货金额"。
接着构建数据质量扫描机制,自动识别异常值,追踪缺失字段。
最后建立数据血缘地图,可视化关键数据流转路径。
一家物流企业通过数据治理,清洗运单数据后,路由优化算法准确率从68%提升至89%,每年节省运输成本达千万级。
第二支点:知识库——让经验"变现"
一位技术总监不无遗憾地说:"每年都有精英离职,他们带走的不只是人,更是我们公司解决问题的能力。"知识沉淀不足导致企业永远在原地打转
。
知识库建设核心是将隐性知识变为企业资产:
首先用NLP技术从海量非结构化文本中提取知识点,如从客服工单中挖掘常见问题解决方案。
其次建立知识智能推送机制,当客户报障时,系统自动推送类似历史案例。
最后设计知识贡献积分制,激励持续更新。
某保险公司将核保知识库接入业务系统后,新人上岗培训时间从6周缩短至2周,核保准确率提升15%。
第三支点:大模型——搭建"数字大脑"
"我需要向欧洲区总结Q3销售情况,能在明早8点前生成分析报告吗?"当销售总监向系统提出这个问题,大模型能在10分钟内完成过去需要2天的分析工作。
大模型的价值在于将海量数据转化为即时决策力
。
实施路径包括:优先选择高频低风险场景,如智能报表生成;合理设计模型训练方式,用历史决策作为反馈奖励;建立人机协同机制,设置关键节点的人工审核。
某电商企业用大模型自动生成商品详情页,A/B测试显示转化率提升19%,每年带来上亿增量收入。
结语
当数据治理、知识库和大模型
三大支点相互融合,企业将形成"决策飞轮
"——一个自我加速的良性循环系统:
治理后的高质量数据,喂养知识库生成结构化知识;
结构化知识库为大模型提供精准训练素材;
大模型输出的智能决策反过来指导业务行动;业务行动产生新数据,再次纳入治理体系——完美闭环。
企业将因数据智能
形成鲜明分化:一类是传统"体力型"企业,用人海战术手动处理数据;另一类是先进"智能体"企业,建成自运转的决策飞轮,以10倍速度响应市场变化。
未来已来,你希望成为哪一类?
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。