相较于传统的AI技术,以大模型为代表的生成式AI技术所带来的变化,不仅体现在参数规模上,更体现在算法演进所呈现出的“智慧涌现”的效应,技术的跨越式发展为金融科技创新提供了更加广阔的空间。
当前,保险行业还是以专家判断型的人工管控和劳动密集型的渠道营销为主,多年以来积累的数据资产需要通过人工智能等技术挖掘出更大的业务价值。大模型与保险公司在底层逻辑上具有天然的契合性,使保险公司迎来重塑价值链的新机遇,为保险公司各业务环节通用、专用服务的提升带来非常大的想象空间。
客服场景对于保险公司来说不仅是提供服务的一个环节,更是维护和发展客户关系、管理品牌形象、控制风险和促进业务增长的关键。优化客户服务体验,提升客户满意度,是保险公司长期稳健发展的重要策略之一。
过去几年,头部保险公司在智能客服上均有持续的资金投入与战略升级。但在大模型出现以前,智能客服主要是基于预设的规则和知识库进行问题解答,这种方式虽然在处理常见和标准问题时效率较高,但也存在理解能力有限、缺乏上下文感知、交互性和灵活性不足、知识运维成本高、个性化服务不足等问题。
在大模型加持下,沙丘智库认为智能客服可以实现:
第一,语义理解能力增强。大模型基于超大规模数据训练,能够理解并处理复杂的语义结构,使得智能客服能够更准确地解析和理解用户的自然语言输入。这些模型利用上下文信息和深层次的语言模式,能够精确识别用户意图,改进意图识别流程。
第二,情绪识别与应对。大模型通常集成了情绪识别技术,能够根据用户的语言和表达推断其情绪状态,从而调整回应策略。这种能力使得智能客服在处理客户的问题时更具同理心和人性化,能更有效地管理用户的情绪和满足他们的需求。
第三,更自然的对话体验。大模型能够生成流畅、自然的语言,使得用户与智能客服之间的对话更类似于人与人之间的交流。这种改进不仅增强了用户体验,提升了用户满意度,还有助于构建用户的长期信任和依赖。
第四,知识自动更新。大模型具备持续学习能力,可以通过不断的数据训练来迅速适应新的市场动态、产品变更或政策更新。这使得智能客服系统始终能提供最新、最准确的信息和服务。
第五,个性化服务体验。通过分析用户的历史交互、偏好和上下文对话信息,大模型能够提供定制化的建议和解决方案。个性化服务不仅限于内容的相关性,还包括回应的语气和风格,使得每位用户得到定制化的服务。
沙丘智库长期跟踪调研大模型技术的发展,旨在帮助企业快速了解大模型最新最全面的落地情况,当前,头部保险公司均已将智能客服作为大模型技术的重点应用场景之一,旨在进一步提升服务质量和客户满意度,优化运营效率和成本控制。
沙丘智库对7家头部保险公司“大模型+智能客服”的应用探索梳理如下:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。