之前有出过两篇关于本地部署及使用 AI 绘图应用 Stable Diffusion 的文章:
后面因为电脑出图还是有点慢,所以基本没咋用,以至于 Flux 出道以来也没有玩儿过。不过幸好「硅基流动」有提供:
-
免费的 Flux 在线体验,出图速度非常快!
-
还提供了 API 服务
到目前为止硅基提供了一些比较火的 AI 大模型,都是限时免费,有需要的小伙伴抓紧冲!!
Siliconflow 硅基流动限免 AI 大模型
硅基流动:https://cloud.siliconflow.cn/i/vhHfOKhq
除了 Flux 限免之外,可以生成图片的限免模型还有 Stable Diffusion。没错!目前这两款市面上比较火的生图模型,硅基目前都免费开放给用户使用。
限免的模型种类从功能上来说有五种,分别是:
对话(这里只举例 7B 及以上的模型)
Qwen/Qwen2.5-7B-Instruct
Qwen/Qwen2.5-Coder-7B-Instruct
internlm/internlm2_5-7b-chat
meta-llama/Meta-Llama-3.1-8B-Instruct
Qwen/Qwen2-7B-Instruct
THUDM/glm-4-9b-chat
01-ai/Yi-1.5-9B-Chat-16K
google/gemma-2-9b-it
AIDC-AI/Marco-o1
这些模型一般可以用在 AI 对话的场景中。
嵌入(Embedding)
netease-youdao/bce-embedding-base_v1
BAAI/bge-m3
BAAI/bge-large-en-v1.5
BAAI/bge-large-zh-v1.5
在 AI 知识库这一领域,Embedding 模型是非常重要的,所以对于想接触这一方面的朋友来说,可以先使用这几个免费的嵌入模型试试水。
重排序(Rerank)
netease-youdao/bce-reranker-base_v1
BAAI/bge-reranker-v2-m3
同嵌入模型一样,AI 知识库在结合 Rerank 模型之后,可以增强知识库的检索能力,建议二者搭配使用。
语音
FunAudioLLM/SenseVoiceSmall
之前 AI 语音大火的时候,有大佬搞过智能生成 AI 播客的 Bots,很是惊艳~
视频
Lightricks/LTX-Video
AI 生成视频不用多说,现在比较热门的短视频平台上,就有大佬使用 AI 生成一些比较科幻又热血的作品,令人印象深刻的就是「豆撅子精」(不知道有没有山东的朋友刷到过😂)
感兴趣的小伙伴可以白嫖一波~
在 Dify 中使用
在 Dify 中内置了 SiliconFlow 的工具,只需要填入 SiliconFlow(也就是硅基流动)的 API Key 就可以使用 Flux 和 Stable Diffusion:
❓如何获取 SiliconFlow 的 API Key 呢?👉入口:https://cloud.siliconflow.cn/i/vhHfOKhq
通过上面提供的硅基流动链接进入到官网之后,在左侧菜单「API 密钥」中心新建即可~如下图
授权好之后我们就可以在 Agent 和工作流中使用了~
测试
我们直接在 Agent 中测试即可,在工作流中只要使用对应的工具,最终的效果是一样的。
创建一个 Agent,并在其中使用 SiliconFlow 工具:
为了测试方便,我们先使用 Stable Diffusion,再使用 Flux。
Stable Diffusion
使用之前用过的提示词画一个赛博朋克风的小姐姐~
👇原图在这里,很赛博朋克啊朋友们~
Flux
接下来试试 Flux,看看效果如何,这次画一个类梵高的作品:
其他不说,出图速度真的快,8s 就出来了。要是用我自己的电脑,每个几分钟出不来。下面是画出来的原图
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。