DeepSeek 在电子政务中的创新实践案例已覆盖全国多地,形成了多领域、多层次的智能化应用体系,以下是具有代表性的创新案例:
一、*政务流程智能化升级*
1. *深圳福田区 AI 数智员工*
部署全尺寸 DeepSeek 大模型,推出 70 名“数智员工”,覆盖 11 大类 240 个政务场景,显著提升效率:
- 执法文书生成:笔录秒级转初稿,错误率降低 90%;
- 安全生产管理:演练脚本生成效率提升 100 倍;
- 招商引资:企业分析筛选效率提高 30%,耗时缩至分钟级。
2. *无锡市全尺寸模型部署*
在政务信创环境下完成 DeepSeek-R1-671B 全尺寸模型部署,上线 5 项原生应用:
- 公文写作助手:5 分钟生成标准化事故初报;
- 数字人“小城”“小运”:实时响应咨询,匹配政策精度超 90%。
3. *辽宁朝阳移动端公文生成*
基于 DeepSeek 实现移动端公文生成,首份公文《喀左县农文旅发展方案》通过辽政通生成,支持市县乡村四级协同办公,突破基层移动化、智能化瓶颈。
二、*政务服务优化与民生响应*
4. *韶关市四级全覆盖应用*
部署 DeepSeek-R1 满血版模型,覆盖市县镇村 8.7 万公务人员,日均调用超 20 万次:
- 公文处理:基于 2000 份本地样本训练,实现扩写、润色等智能辅助;
- 智慧医疗:自动生成诊断报告,提升诊疗速度与准确性。
5. *临沂“沂蒙慧眼”系统*
集成 DeepSeek 实现企业画像报告自动生成、风险预警,分析效率提高 60%,累计助力融资超 33 亿元。
6. *辽宁 12345 热线升级*
接入 DeepSeek 后,工单责任部门识别准确率提升至 95%,实现民生诉求“秒级响应”。
三、*城市治理与数据安全创新*
7. *呼和浩特城市大脑集成*
本地化部署多版本 DeepSeek 模型(7B-70B),实现 12345 接诉即办智能问答,并探索自然灾害多模态预警分析。
8. *苏州多模态城市管理*
利用图像识别技术自动识别占道经营,案件上报效率提高 5 倍,并开发“数字政务智能助手”实现对话式政务服务。
9. *数据安全与国产化部署*
- 烟台:本地化存储与处理政务数据,动态调整模型参数保障安全;
- 韶关:采用国产化云底座+属地化存储,实现政务数据物理隔离。
四、*区域协同与生态构建*
10. *上海 AI 生态建设*
推动 DeepSeek 参与开源社区,试点 AI 伦理评估框架,探索政务模型标准化应用。
11. *昆山县域智慧政务*
全国首个县级市政务云部署国产化模型,构建“公共智慧底座+垂直场景训练”体系,企业合规审查效率提升 3 倍。
创新亮点总结
- 技术适配:多地采用“通用底座+垂直小模型”架构应对碎片化场景;
- 效率跃升:部分场景效率提升达 20%-100 倍(如安全生产、公文处理);
- 模式创新:从单一热线应答转向多领域渗透(如医疗、基层治理)。
这些案例体现了 DeepSeek 在政务场景中“技术-业务-安全”三位一体的创新突破,为数字政府建设提供了可复制的实践路径。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。