精神健康问题在全球范围内对个人及社会构成了重大负担。据估计,超过20%的美国成年人在一生中至少经历一种精神障碍,而全球经济每年因抑郁和焦虑等精神健康问题损失约1万亿美元。因此,开发能够有效预测和监测精神健康状况的工具显得尤为重要。
本文探讨了大语言模型(LLMs)在精神健康预测领域的应用潜力及其局限性。研究者们对多个大语言模型进行了全面的评估,考察了它们在不同精神健康预测任务中的表现,这些任务利用的是在线文本数据,例如社交媒体内容。
本文的核心在于评估三种不同的方法:零样本提示、少样本提示和指令微调。零样本提示仅依靠模型的预训练知识,不提供任何与特定任务相关的训练数据。少样本提示则在提示中加入少量示例,以引导模型更好地理解任务。指令微调则通过在多个精神健康数据集上对模型进行微调,使其能够更好地适应各种精神健康相关的任务。
实验结果显示:
●零样本提示:所有大语言模型在精神健康预测任务中表现出一定的潜力,但整体表现仍然有限。
●少样本提示:提供示例可以显著提高模型性能,尤其是对于小型模型。
●指令微调:在多个数据集上进行微调后,模型性能显著提升。
本研究的主要贡献包括:
●对多种大语言模型在精神健康领域的零样本提示、少样本提示和微调技术进行了全面评估。
●通过在线社交媒体数据,揭示了在多种数据集上微调可以显著提高大语言模型在多个精神健康特定任务上的能力。
●将“精神健康-阿尔派卡”和“精神健康-弗莱恩-T5”作为针对多个精神健康预测任务的开源大语言模型发布。
●为将来的研究人员和开发人员提供了一些技术指导,以将大语言模型转变为特定领域的专家,并强调了在将大语言模型用于健康相关任务时需要注意的重要伦理问题。
总之,本文对利用大语言模型做精神健康预测进行了全面的评估,并为该领域未来的研究方向提供了重要的见解,但本文也谨慎地指出,将这些模型应用于实际的精神健康环境中,需要克服许多挑战,包括模型的偏见、可靠性和伦理问题。这项工作为利用人工智能技术辅助精神健康领域的研究和实践提供了有价值的参考,也为未来研究指明了方向,例如如何减轻模型偏见,如何提高模型的可解释性和可信度,以及如何确保模型的伦理和安全应用。本文的开源代码和模型也为该领域贡献了重要的资源,促进了该领域的研究和发展。未来的研究可以进一步探索如何结合大语言模型和其他技术,例如临床数据和专家知识,以构建更强大和可靠的精神健康预测和干预系统。此外,对不同文化背景和人群进行更广泛的研究,对于减少模型偏见和提高模型的公平性至关重要。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。