上海交通大学与香港大学在Nature Communications联合发表量子机器学习新成果,提出基于多任务学习的神经网络模型

在这里插入图片描述

近日,上海交通大学电子信息与电气工程学院约翰·霍普克罗夫特计算机科学中心的吴亚东副教授与香港大学的朱岩博士及Giulio Chiribella教授合作,在国际顶级期刊Nature的子刊《Nature Communications》上发表了一项关于量子机器学习的重要研究成果。该研究提出了一种基于多任务学习技术的神经网络模型,该模型能够仅使用少量相邻量子比特的测量数据,准确预测关联长度恒定的多体量子态的多种性质。这一成果不仅展示了多任务学习在量子系统预测中的巨大潜力,也为未来量子计算和多体物理的研究开辟了新的方向。

研究背景与意义

多体量子系统的实验表征一直是量子信息与量子计算领域中的一项核心任务。然而,随着量子比特数的增加,完整表征任意一个未知量子态所需要的采样复杂度呈指数增长,这使得实验表征可拓展的量子系统极具挑战性。神经网络作为一种强大的工具,能够紧凑地表示复杂结构的量子态,近年来已被成功应用于通过测量预测量子系统的多种物理性质,例如量子保真度、量子纠缠、量子关联等,还能识别不同的物质相。

表征多体量子系统的一个主要挑战在于,随着系统规模的扩大,所需的测量设置数量呈指数增长。随机测量技术通过从单粒子观测量的乘积集合中随机抽样,减少了所需的测量设置,从而提供了一种高效的量子态性质预测方法。然而,对于具有局部相互作用的多体量子系统,由于其量子态具有特定结构,可能只需从更少的测量中抽样即可。这样的抽样方法可以仅基于短程关联(即只涉及少数相邻粒子的关联)来表征量子态。

基于短程关联的技术已经在量子态层析和纠缠检测中得到了应用。一个有前景的方向是利用神经网络,通过短程关联的采样数据,直接预测量子系统的全局量子性质。此次上海交通大学吴亚东副教授团队的研究正是沿着这一方向取得了重要进展。

研究内容与成果

在这项研究中,吴亚东副教授、朱岩博士及Giulio Chiribella教授合作提出了一种基于多任务学习技术的神经网络模型。该模型能够仅使用少量相邻量子比特的测量数据,预测具有常量关联长度的多体量子态的多种量子性质。与传统的单任务学习相比,多任务学习的预测准度更高,展示了诸多优势。

数值实验表明,对于足够规则的量子系统,该模型可以通过短程关联的观测来预测如序参量等全局性质,并能区分单任务模型难以辨别的量子物相。这一成果不仅提升了量子系统性质的预测精度,还展示了多任务学习在量子机器学习中的独特优势。

具体来说,该神经网络模型的一个关键特性是其能够生成量子态的潜在空间表示,此表示可以整合多种物理性质的不同信息。令人惊讶的是,这些量子态表示似乎还能捕捉到训练中未打标签的物理性质。这一特性使得该模型能够对不同物相进行无监督的分类,不仅适用于分布内的哈密顿量基态,还可以泛化到分布外的量子态,例如由随机量子线路生成的量子态。

此外,该模型还展示出从小规模量子系统泛化到大规模量子系统的能力,这使得它成为探索中等规模量子系统的有效工具。这一特性对于当前量子计算和多体物理研究来说具有重要意义,因为中等规模量子系统的研究是连接小规模量子系统实验和大规模量子系统应用的桥梁。

多任务学习的优势

多任务学习(MTL)是一种学习范式,通过同时解决多个相关任务,有效地利用任务特定和共享信息。与单任务学习(STL)相比,MTL提供了一系列优势,包括流线型模型架构、性能提升和跨领域泛化能力。

首先,MTL通过共享表示层,使得多个任务能够共同学习,从而减少了模型的参数数量和计算复杂度。这种流线型模型架构不仅提高了训练效率,还增强了模型的泛化能力。

其次,MTL通过引入额外的任务,为模型提供了更多的训练信号,有助于防止过拟合。同时,由于不同任务之间可能存在互补信息,MTL能够利用这些信息来提高模型的性能。

最后,MTL的跨领域泛化能力使得模型能够将从一个任务学到的知识迁移到另一个任务中。这种迁移学习能力对于处理具有相似性质的不同任务来说尤为重要,因为它可以显著减少所需的训练数据和计算资源。

在此次研究中,吴亚东副教授团队利用多任务学习的这些优势,成功构建了一个能够准确预测多体量子态性质的神经网络模型。该模型不仅提高了预测精度,还展示了强大的泛化能力和无监督分类能力。

实验验证与结果分析

为了验证所提模型的性能,吴亚东副教授团队进行了大量的数值模拟实验。实验结果表明,对于短程关联的量子态,多任务神经网络模型可以通过短程关联来预测全局性质(如多体拓扑不变量),并能够区分单任务网络无法区分的不同的对称保护拓扑相。

具体来说,研究团队采用了链交替XXZ模型作为测试案例,通过模拟不同量子比特数的系统,验证了模型的预测能力和泛化能力。实验结果显示,该模型能够准确预测50个量子比特系统的互信息和自旋关联,并且在测量采样次数和测量设置数方面均表现出优于单任务学习的性能。

此外,研究团队还通过t-SNE算法对量子态表示进行了二维投影,并展示了神经网络对多体拓扑不变量的预测结果。实验结果表明,该模型能够清晰区分两种不同的对称保护拓扑相,并且在区分这两种对称保护拓扑相时表现出优于基于经典阴影的算法的性能。

研究展望与未来方向

此次研究成果不仅为量子机器学习领域带来了新的突破,也为未来量子计算和多体物理研究提供了新的思路和方法。然而,该研究仍存在一些挑战和需要进一步探索的方向。

首先,虽然该模型在数值模拟中取得了显著的效果,但在实际应用中仍需要面对量子噪声和测量误差等问题。因此,如何提高模型的鲁棒性和抗干扰能力将是未来研究的重要方向之一。

其次,随着量子计算技术的发展,如何将该模型应用于实际量子计算系统中,实现更高效、更准确的量子态性质预测,也是未来研究的重要课题。

最后,该研究提出的基于多任务学习的神经网络模型为探索未知量子系统提供了新的工具。未来,可以利用该模型与一致性检验相结合的方法,以无监督的方式发现新的量子物相和量子态性质,推动量子物理和量子计算领域的发展。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值