本期具体内容包括1.Ollama下载安装、2.大模型部署(以deepseek为例)、3.Dify接入本地大模型、4.通过chatbox使用本地大模型(额外内容)。如果只想本地部署大模型可以只看1、2,如果想要通过Dify接入本地大模型可以看1、2、3,如果想脱离Dify直接方便的使用本地大模型可以看1、2、4。
1、Ollama下载安装
大模型的本地部署方式有很多,可以直接部署,也可以借助其他工具进行部署,为了方便使用和管理,通常是借助其他工具进行部署,例如Ollama或者LM Studio,相比于LM Studio,Ollama下载模型方便且兼容性好,但是安装会稍微麻烦一点而且没有界面,不过这些都好解决。
首先进入Ollama的官网https://ollama.com/,然后点击Download即可,这一步可能需要挂vpn,否则会访问不了,不过也不用担心,我已经把安装包放到了网盘,私信回复“1235”可以获取。
下载好后,打开安装包即可安装,对于Windows用户来说一路点击下一步就好了,Ollama默认是安装到C盘,如果想迁移到其他路径可以期待下一期文章。
安装完成之后可以进行一下验证,打开cmd,输入ollama,如果像下面这样显示即表示安装成功了。
安装成功后可以在系统变量设置一下模型的下载路径,在桌面找到“此电脑”,右键“属性”,然后点击“高级系统设置”,找到“环境变量”,在系统变量下点击“新建”,在变量名输入“OLLAMA_MODELS”,在变量值输入自己想放置模型的路径。
重启一下Ollama,注意一定要重启,否则环境配置不生效,下载的模型还是默认在C盘。
2、大模型部署(以deepseek为例)
安装完Ollama后,即可依托Ollama进行大模型的部署,此处有两种办法,一种是在线安装,直接在Ollama的模型库里找,然后通过命令安装,Ollama会自动下载并部署模型;另一种是离线安装,离线安装是指从其他资源网站下载好模型(.gguf文件),例如从hugging face上下载模型,然后通过modlefile文件进行安装。此处以在线安装作为示例。
首先进入Ollama官网,点击Models,进入模型资源库。
随便选择一个模型,此处以deepseek-r1:1.5b为例,注意名称一定要和官网名称一致。
打开cmd,输入ollama run deepseek-r1:1.5b,即开始自动拉取模型,等待完成即可。
完成后即可开始对话,此时由于ollama没有界面,所以只能通过cmd进行对话。
后续可以通过打开cmd,输入ollama run 模型名称 使用,如果不清楚已经安装的模型具体名称,可以输入 ollama list 查看。
第3步将介绍怎么在Dify中接入和使用本地大模型,第4步将介绍通过chatbox在可视化的界面中使用大模型。
3、Dify接入本地大模型
完成大模型的本地部署后,暂时还不能在Dify中使用,还需要进行一些配置。
注:Dify的安装可以查看上一期文章
首先,打开浏览器,输入http://localhost/apps进入Dify,点击页面右上角头像的设置,在模型供应商中找到Ollama并点击安装。
等待安装完成后进行模型配置,此处配置包括两部分,一个是LLM模型配置,所谓LLM即是大语言模型,此处可以是deepseek的模型也可以是chatgpt的模型或者是其他模型,其主要作用就是对话;另一个是Text Embedding模型,也叫文本嵌入模型,它是应用于知识库的模型,其主要功能是把知识库中的文本转换成向量,因为计算机无法直接理解自然语言,但是当把自然语言转换成向量之后,就可以通过数学的方式去进行理解和计算,例如你输入一个问题,从知识库中获得结果,本质就是把问题转换成向量并在知识库中检索和问题相似度最高的向量。此处可以用deepseek-r1模型进行配置,也可以使用其他专门的模型进行配置。
在模型名称中填写上一步下载的模型,如果不知道模型名称可以打开cmd,输入ollama list查看已经安装的模型。基础URL代表的是Ollama 服务地址,Ollama是默认暴露11434端口进行API调用,如果Dify是通过Docker部署的话,在基础URL中填入http://host.docker.internal:11434即可,如果是其他方式部署的Dify,可以参考帮助文档:https://docs.dify.ai/zh-hans/development/models-integration/ollama。剩余参数保持默认即可。最后点击保存
如果保存按钮变成灰色并且迟迟没有保存成功,可以参考一下步骤重新启动Dify的Docker服务以及重新启动大模型。
进入到Dify的工程文件,找到docker文件夹里的.env文件,用记事本打开,并在最后添加以下内容:
#启用自定义模型
CUSTOM_MODEL_ENABLED=true
#指定ollama的API地址
OLLAMA_API_BASE_URL=host.docker.internal:11434
按照下图步骤重启docker服务,并且运行模型
完成配置后可以看到两个模型都处于开启状态,此时即可在Dify中使用本地大模型。
回到Dify的工作空间,在“工作室”中创建空白应用,此处以工作流为例,点击工作流,输入名称和描述创建。
在工作流中添加LLM节点,点击节点可以在右侧进行配置,点击模型可以切换为刚才安装的deepseek-r1:1.5b模型
4、通过chatbox使用本地大模型
仅通过Ollama部署的本地大模型如果不借助其他工具只能在cmd中进行对话使用,如果想在可视化的界面中使用本地大模型,可以考虑使用chatbox这类的AI客户端,chatbox的优点在于轻量化和高性能。
首先进入官网https://chatboxai.app/zh?ref=tian 下载chatbox,下载完成后一路点击下一步即可安装。
安装完成后打开软件,会弹出提示框,选择使用自己的API Key或本地模型,或者可以点击设置进入配置界面。
在模型栏填入API域名和模型名称,点击保存。
注意:配置前需要先启动Ollama并运行模型。
新建一个对话,此时可以看到配置的模型已经成功应用了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。