通过前几期的推送,我们学习了对比数据差异的柱形图、显示数据占比关系的饼图以及反应数据变化趋势的折线图,还有一种图表是散列点分布在坐标中,反应数据随着自变量变化的趋势——散点图。
本期小编就带领大家一起学习如何用 matplotlib 绘制散点图,如果你也感兴趣的话,就继续看下去吧~
散点图概述
什么是散点图?
散点图将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,判断是否存在某种关联或者分布模式,点的位置由变量的数值决定。
散点图应用场景:
用于观察数据集的分布情况
用于比较跨类别的聚合数据
用于分析数据线性、多项式趋势情况
用于找到数据趋势公式
散点图基础绘制
我们可以使用 pyplot 中的 scatter()方法来绘制散点图。
1、基础绘图
**x、y:**长度相同的数组,也就是我们即将绘制散点图的数据点,输入数据。
**scatter()函数:**接收长度相同的数组参数,一个用于x轴的值,一个用于y轴的值。
代码:
运行结果:
2、设置点的大小
**s:**点的大小,默认 20,也可以是个数组,数组每个参数为对应点的大小。
代码:
运行结果:
3、设置颜色、透明度与样式
**c:**点的颜色,默认蓝色 ‘b’,也可以是个 RGB 或 RGBA 二维行数组。
**alpha:**透明度设置,0-1 之间,默认 None,即不透明。
**marker:**点的样式,默认小圆圈 ‘o’。取值还可以取:(‘o’, ‘v’, ‘^’, ‘<’, ‘>’, ‘8’, ‘s’, ‘p’, ‘*’, ‘h’, ‘H’, ‘D’, ‘d’, ‘P’, ‘X’)。
代码:
运行结果:
散点图其他个性绘制
1、设置颜色条
Matplotlib 模块提供了很多可用的颜色条。颜色条就像一个颜色列表,其中每种颜色都有一个范围从 0 到 100 的值。
设置颜色条需要使用 cmap 参数,默认值为 ‘viridis’,之后颜色值设置为 0 到 100 的数组。
代码:
运行结果:
2、设置多组散点图
代码:
运行结果:
3、使用随机数来设置散点图
代码:
运行结果:
以上就是“Python数据分析 | 数据可视化(五)”的全部内容,希望对你有所帮助。
关于Python技术储备
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、Python练习题
检查学习结果。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
最后祝大家天天进步!!
上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。