ComfyUI - 专为Stable Diffusion设计用户界面

ComfyUI

ComfyUI是一个基于节点的用户界面(GUI),专为Stable Diffusion设计,提供了一种更加直观、灵活的方式来操作和管理图像生成的过程。

为Windows和macOS设计的桌面客户端,它提供了一键安装的便利性,并拥有全新的用户界面。用户可以通过加入等待名单来获得早期访问权限。这款软件的主要优点在于它的易用性和现代化的界面设计,旨在提高用户的工作效率。

ComfyUI不仅是一个用户界面(UI),还是一个具有强大功能和高度模块化设计的系统,其GitHub页面描述它为“最强大且模块化的稳定扩散GUI、API和后端,带有图形/节点界面”。ComfyUI由Python、JavaScript和CSS编程语言开发,于2023年1月17日创建。ComfyUI以其低内存需求、快速启动和出图而闻名,适合那些需要精细控制和高度自定义的用户。


这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

主要功能

  1. **高度可定制性:**ComfyUI支持多种模型和模式,用户可以根据自己的项目需求选择合适的模型和模式。同时,用户可以通过调整模块连接来达到不同的出图效果,实现更精准的工作流定制和完善的可复现性。

  2. 快速启动和出图:ComfyUI对显存要求相对较低,启动速度快,出图速度快,能够大幅提高用户的工作效率。

  3. 高度自由度:ComfyUI提供了更高的生成自由度,用户可以通过自定义设置和插件来扩展其功能,满足各种复杂场景的开发需求。

  4. 流程分享:ComfyUI能够与web UI共享环境和模型,允许用户搭建自己的工作流程,并可以导出流程分享给别人。

  5. 轻量化:ComfyUI是一个轻量级的UI框架,能够方便地集成到已有的项目中,而不需要对现有的代码做大规模调整。

快速使用

Windows

有一个适用于 Windows 的可移植独立版本,它应该适用于在 Nvidia GPU 上运行或仅在 CPU 上运行在发布页面上。

下载的直接链接

只需下载,使用 7-Zip 解压并运行。确保将稳定扩散检查点/模型(巨大的 ckpt/safetensors 文件)放在:ComfyUI\models\checkpoints

如果您在提取它时遇到问题,请右键单击文件 -> properties -> unblock

如何在其他 UI 和 ComfyUI 之间共享模型?

请参阅 配置文件 来设置模型的搜索路径。在独立 Windows 版本中,您可以在 ComfyUI 目录中找到此文件。将此文件重命名为 extra_model_paths.yaml,并使用您最喜欢的文本编辑器对其进行编辑。

Jupyter 笔记本

要在 paperspace、kaggle 或 colab 等服务上运行它,您可以使用我的 Jupyter Notebook

手动安装(Windows、Linux)

请注意,某些依赖项尚不支持 python 3.13,因此建议使用 3.12。

Git clone 此存储库。

将你的 SD 检查点(巨大的 ckpt/safetensors 文件)放在:models/checkpoints

将 VAE 放入:models/vae

AMD GPU(仅限 Linux)

如果您还没有安装 rocm 和 pytorch,AMD 用户可以使用 pip 安装 rocm,这是安装稳定版本的命令:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.1

以下是使用 ROCm 6.2 安装 nightly 的命令,它可能会有一些性能改进:

pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.2

英伟达

Nvidia 用户应使用以下命令安装稳定的 pytorch:

pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu124

这是在 nightly 上安装 pytorch 的命令,它可能会提高性能:

pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu124

故障 排除

如果您收到“Torch 未在启用 CUDA 的情况下编译”错误,请使用以下命令卸载 Torch:

pip uninstall torch

并使用上面的命令再次安装它。

依赖

通过在 ComfyUI 文件夹中打开终端来安装依赖项,然后:

pip install -r requirements.txt

在此之后,您应该已安装所有内容,并可以继续运行 ComfyUI。


这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,我现在要帮助用户解决如何使用ComfyUI下载和配置Stable Diffusion的问题。首先,我需要回想一下ComfyUI的基本信息。ComfyUI是一个基于节点工作流的图像生成工具,用户可能对它的安装和配置不太熟悉,特别是结合Stable Diffusion模型。 用户提到参考的引用[1]是关于ComfyUI支持Stable Diffusion 3.5 Medium的内容,但用户的问题是如何下载和配置。我需要确保步骤准确,并且考虑到用户可能遇到的常见问题,比如模型文件的放置位置或者依赖项的安装。 首先,我应该分步骤说明如何下载ComfyUI。可能的方法包括从GitHub克隆仓库或直接下载压缩包。然后,安装步骤需要涵盖依赖项的安装,比如使用pip安装必要的库。接下来,用户需要下载Stable Diffusion的模型文件,这通常是从Hugging Face或其他官方渠道获取,并放置到正确的目录中,比如ComfyUI/models/checkpoints。 然后,配置部分可能需要启动ComfyUI,并确保模型被正确加载。这里需要提醒用户检查路径是否正确,以及模型文件是否完整。常见问题可能包括模型未显示,这可能是因为路径错误或文件损坏,所以需要给出解决建议。 另外,用户可能对工作流程不熟悉,所以需要简单说明如何添加必要的节点来生成图像,比如加载模型、输入提示词和调整参数等步骤。最后,生成相关问题时要围绕ComfyUI的使用、模型管理和优化等方面,帮助用户进一步了解相关主题。 需要确保所有步骤清晰,避免使用过于专业的术语,让新手也能理解。同时,检查是否有遗漏的步骤,比如Python环境的准备或者CUDA驱动的安装,这些可能影响ComfyUI的运行。如果有不确定的地方,可能需要建议用户查阅官方文档或社区支持。 总结下来,回答的结构应该是:安装ComfyUI -> 安装依赖 -> 下载模型 -> 配置路径 -> 启动使用 -> 常见问题处理。这样逐步引导用户完成整个过程,并预见到可能的问题点,提供解决方案。</think>### 使用 ComfyUI 下载和配置 Stable Diffusion 的分步指南 #### 1. 下载 ComfyUI - **从 GitHub 获取源码** ComfyUI 是一个开源项目,建议从官方仓库下载以获取最新版本: ```bash git clone https://github.com/comfyanonymous/ComfyUI.git ``` 或者直接下载 ZIP 压缩包并解压到本地目录[^1]。 #### 2. 安装依赖项 - **通过 pip 安装必要库** 进入 ComfyUI 目录,安装 Python 依赖: ```bash cd ComfyUI pip install -r requirements.txt ``` 若使用 GPU 加速(推荐),需额外安装 CUDA 版本的 PyTorch: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121 ``` #### 3. 下载 Stable Diffusion 模型 - **获取模型文件** Stable Diffusion 的官方模型(如 `sd_xl_base_1.0.safetensors`)需从 Hugging Face 下载: 1. 访问 [Hugging Face 模型库](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) 2. 下载 `.safetensors` 格式的模型文件 3. 将模型文件放入 `ComfyUI/models/checkpoints/` 目录 #### 4. 配置并启动 ComfyUI - **运行主程序** 执行以下命令启动 Web 界面: ```bash python main.py ``` 默认访问地址为 `http://127.0.0.1:8188`。若需自定义端口,添加 `--port <端口号>` 参数。 #### 5. 验证模型加载 - **检查模型是否生效** 在 Web 界面中: 1. 右键点击画布 → 选择 `Load Checkpoint` 节点 2. 查看下拉列表中是否包含已下载的模型名称 3. 若未显示,检查模型文件路径和格式是否正确 #### 6. 生成第一张图像 - **构建基础工作流** 按以下节点流程操作: ``` Load Checkpoint → CLIP Text Encode (Prompt) → KSampler → VAEDecode → Save Image ``` 输入提示词(如 "a cat on a sofa")后点击 `Queue Prompt` 生成图像。 --- ### 常见问题解决 1. **模型未显示在列表中** - 确认模型文件位于 `models/checkpoints/` 目录 - 检查文件扩展名是否为 `.ckpt` 或 `.safetensors` - 重启 ComfyUI 服务 2. **GPU 未调用** - 确认已安装 CUDA 版本的 PyTorch - 在启动命令后添加 `--cuda-device 0` 3. **依赖项安装失败** - 使用 Python 3.10 或更高版本 - 尝试 `pip install --upgrade pip` 更新 pip ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值