ComfyUI高清放大工作流拆解,stablediffusion教程

在AI绘画中,给生成的图片进行高清修复或超分辨率手段进行放大,是一个应用最为广泛,也相对最为简单的操作。

在StableDiffusion中对图片进行放大一般有三种方法:文生图中的高清修复(Hi-res fix)、图生图中的SD放大(SD Upscale)脚本、后期处理中的算法放大。

下面我们来介绍几种在 ComfyUI 对图片进行放大的方法

一、文生图放大

1、Latent放大工作流

下面就是 ComfyUI标准的文生图高清修复工作流

在这个工作流中,一共分为4个部分:

首先是标准文生图部分(Txt2img)。文生图生成的图像先保存成中间图像(Save Intermediate lmage),然后输入到高清放大部分(Hires Fix),最后生成最终的图像(Save Final Image)。
这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 文生图部分

这个部分根据你的出图要求选择不同的模型,再输入正反向提示词,设置好采样参数即可,没有什么需要特别注意的地方。。

  • 高清放大部分

这个部分注意两个参数,一个是 Latent 缩放,在这里设置你想要放大的图像尺寸。

另一个是K采样器里的降噪数值。

降噪数值也是最重要的参数,它直接决定了第二次高清放大时的去噪力度,你也可以理解为重绘幅度。

降噪数值越大,图像变化越大;数值越小,图像越接近原图。

一般建议0.5-08左右

下面这张是降噪数值设为0.5后放大的图像。

2. ESRGAN(传统模型)放大工作流

用Latent放大工作流对图片进行放大时,降噪值的大小会对原图片产生影响,如果调节不好,放大后的图片会对原图产不小的改变。

而 Esrgan放大工作流就不会有这个问题,它不会改变原图内容。

但它也有一个问题,就是在进行放大的时候,占用显存比较高,如果是低显存用户会爆显存。

通过放大模型对图片进行放大时,目前公认放大效果比较好的模型是下图中的 realEsRGAN_x4plus.pth 模型。

二、图生图放大

**1、**图生图放大–用Latent放大工作流

新建一个加载图像节点和一个VAE编码节点,删除原来的“K采样器”节点后,按下图将各节点连接起来就可以了。

2. 图生图放大–ESRGAN(传统模型)放大工作流

用ESRGAN方法进行图生图放大更简单,直接新建一个加载图像节点,像向车间这样连接连点就可以了。

今天简单介绍这两种图片放大的方法,明天我们介绍另外两种图片放大的工作流。

这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值