【GNN】第八章 基于GIN的图表征学习

本文参考自datawhale2021.6学习:图神经网络

【GNN】第一章 图论基础

【GNN】第二章 PyG中的图与图数据集

【GNN】第三章 消息传递范式与PyG的MessagePassing基类

【GNN】第四章 节点表征学习与节点分类任务(理论+调包实操)

【GNN】第五章 构造数据完全存于内存的数据集类InMemoryDataset

【GNN】第六章 边预测任务

前言

  • 图表征学习要求根据节点属性、边和边的属性(如果有的话)生成一个向量作为图的表征,基于图表征我们可以做图的预测
  • 基于图同构网络(Graph Isomorphism Network, GIN)的图表征网络是当前最经典的图表征学习网络

在论文《How Powerful are Graph Neural Networks?》 中:

  • 首先证明了 WL-test 是目前所有 GNN 的性能上界,
  • 并通过分析目前 GNN 出现的问题提出了构建有效的 GNN 的方法:使用单射函数
  • 同时也利用 MLP 拟合单射函数设计出一个新的架构模型 GIN,并通过实验证明 GIN 的性能逼近 WL-test

1 WL-test

目前解决图同构问题最有效的算法

1.1 同构图 Graph Isomorphism

  • 两图的边和顶点数量相同,且边的连接性相同
  • 也可以认为一图的点是由另一图的点映射得到
  • 计算图同构可以度量图的相似度(比如实际应用中具有相似结构的分子可能具备相似的功能特性)
    在这里插入图片描述
    在这里插入图片描述

1.2 多重集 Multiset

一组可能重复的元素集合。例如:{1,1,2,3}就是一个多重集合

1.3 1-dimensional WL-test 及图相似度量

  • 通过计算图特征向量来衡量图相似度。
  • WL 算法可以是 K-维的,K-维 WL 算法在计算图同构问题时会考虑顶点的 k 元组。如果只考虑顶点的自身特征(如标签、颜色等),那么就是 1-维 WL 算法
  • 举例说明:一次迭代
  1. 给定两个图 G G G G ′ G^{\prime} G,每个节点拥有标签(实际中,一些图没有节点标签,我们可以以节点的度作为标签)
    在这里插入图片描述

2.3. 考虑节点邻域的标签,并对此排序。逗号前是当前标签
排序的原因在于要保证单射性,即保证输出的结果不因邻接节点的顺序改变而改变
在这里插入图片描述
4. 对标签进行压缩映射
在这里插入图片描述
5. 得到新的标签
在这里插入图片描述
6. 计算图特征向量:迭代 1 轮后,利用计数函数分别得到两张图的计数特征,得到图特征向量后便可计算图之间的相似性了
在这里插入图片描述

  • 当出现两个图相同节点标签的出现次数不一致时,即可判断两个图不相似
  • 如果上述的步骤重复一定的次数后,没有发现有相同节点标签的出现次数不一致的情况,那么我们无法判断两个图是否同构

1.4 WL子树

  • 在WL Test的第 k k k次迭代中,一个节点的标签代表了:以该节点为根的高度为 k k k的子树结构
  • 当两个节点的 h h h层的标签一样时,表示:分别以这两个节点为根节点的WL子树是一致的
  • 举例:右图是节点1迭代两次的子树
    在这里插入图片描述

1.5 WL-test的公式表示

  • WL-test分为四步:聚合邻接节点标签、多重集排序、标签压缩、更新标签
  • 公式:
    a v k = f ( { h u k − 1 : u ∈ N ( v ) } ) h v k = Hash ⁡ ( h v k − 1 , a v k ) a^{k}_v = f\left(\{ h^{k-1}_u:u\in N(v) \} \right) \\ h^{k}_{v} =\operatorname{Hash}\left(h_v^{k-1}, a_v^k\right) avk=f({huk1:uN(v)})hvk=Hash(hvk1,avk)
  • 由公式发现,WL-test和GNN一样,学习节点表征分为两步:聚合和结合

2 GIN

2.1 单射的聚合方案

  • 直观来说,一个好的 GNN 算法仅仅会在两个节点具有相同子树结构时才会将其映射到同一位置
  • 由于子树结构是通过节点邻域递归定义的,所以我们可以将分析简化为这样一个问题:GNN 是否会映射两个邻域(即multiset)到相同的 Representation
  • 一个好的 GNN 永远不会将两个不同领域映射得到相同的Representation。即,聚合模式必须是单射
  • 因此,我们可以将 GNN 的聚合方案抽象为一类神经网络可以表示的多重集函数,并分析其是否是单射。

2.2 WL-test是GNN的上界

  • 引理:
    • 对于两个非同构图 G 1 G_1 G1 G 2 G_2 G2,如果存在一个图神经网络将这两个图映射到不同的Embedding向量中,那么也可以通过WL-test确定 G 1 G_1 G1 G 2 G_2 G2 是非同构图
  • 反证法可以证明

2.3 GIN:一个与 WL-test 性能相当的 GNN

GNN 和 WL-test 的主要区别在于单射函数中。顺利成章的,作者设计一个满足单射函数的图同构网络 GIN
h v k = ϕ ( h v k − 1 , f ( { h u k − 1 : u ∈ N ( v ) } ) ) h_v^k = \phi(h^{k-1}_v,f(\{h_u^{k-1}:u\in N(v)\})) hvk=ϕ(hvk1,f({huk1:uN(v)}))

  • f f f 作用在 multisets 上, ϕ \phi ϕ 为单射函数
  • 另外GNN 作用在 multiset 的 READOUT 函数也是单射的

2.3.1 GIN的聚合:SUM+MLP

  • 引理:设 X \mathcal{X} X (有限多重集的集合)可数,那么会存在一个函数 f f f X → R n \mathcal{X}\rightarrow \mathbb{R}^n XRn 使得对于任意有限多重集 X ⊂ X X \subset \mathcal{X} XX 都有
    h ( X ) = ∑ x ∈ X f ( x ) h(X) = \sum_{x\in X}f(x) h(X)=xXf(x)
    其中 h ( X ) h(X) h(X) 对各 X ⊂ X X \subset \mathcal{X} XX 唯一, 即有聚合的单射函数
    此外,任意一个多重集函数 g g g 都可以被分解为:
    g ( X ) = ϕ ( ∑ x ∈ X f ( x ) ) g(X) = \phi(\sum_{x\in X}f(x)) g(X)=ϕ(xXf(x))
  • 推论:设 X \mathcal{X} X (有限多重集的集合)可数,那么会存在一个函数 f f f X → R n \mathcal{X}\rightarrow \mathbb{R}^n XRn 对于任意实数 ε \varepsilon ε 和任意有限多重集 X ⊂ X X \subset \mathcal{X} XX c ∈ X c \in \mathcal{X} cX 都有
    h ( c , X ) = ( 1 + ε ) ⋅ f ( c ) + ∑ x ∈ X f ( x ) h(c,X) = (1+\varepsilon)\cdot f(c)+ \sum_{x\in X}f(x) h(c,X)=(1+ε)f(c)+xXf(x)
    其中 h ( c , X ) h(c,X) h(c,X) 对各组合 ( c , X ) (c,X) (c,X) 唯一 ,即有聚合的单射函数
    此外,任意一个函数 g g g 都可以被分解为:
    g ( c , X ) = ϕ ( ( 1 + ε ) ⋅ f ( c ) + ∑ x ∈ X f ( x ) ) g(c,X) = \phi((1+\varepsilon)\cdot f(c)+\sum_{x\in X}f(x)) g(c,X)=ϕ((1+ε)f(c)+xXf(x))
  • 因此,得到 GIN 的聚合方式
    引入多层感知机来学习函数 ϕ \phi ϕ f f f
    h v k = MLP ⁡ k ( ( 1 + ε ) ⋅ h v k − 1 + ∑ u ∈ N ( v ) h u k − 1 ) h_v^k = \operatorname{MLP}^k((1+\varepsilon)\cdot h_v^{k-1}+\sum_{u\in N(v)}h_u^{k-1}) hvk=MLPk((1+ε)hvk1+uN(v)huk1)
    多层感知机可以近似拟合任何函数
    第一次迭代时,若输入的是one-hot编码,则求和前不需要适用MLP计算 f f f,因为one-hot向量求和后依然是单射的

2.3.2 GIN的读出:SUM+CONCAT

  • READOUT 函数的作用是将图中节点的 Embedding 映射成整张图的 Embedding
  • 作者提出SUM+CONCAT的方式:每轮迭代的节点特征求和作为该论的图特征,再拼接起每轮迭代的图特征作为最终图特征
    h G = CONCAT ⁡ ( ∑ v ∈ G h v k ∣ k = 0 , 1 , ⋯   , K ) h_G=\operatorname{CONCAT}(\sum_{v\in G}h_v^k|k=0,1,\cdots, K) hG=CONCAT(vGhvkk=0,1,,K)

2.3.3 GIN优异的原因

  • GIN 层数更多,多数GNN的变体只有一层

  • GIN 采用了更好的 sum 的聚合操作 :
    sum可以学到网络结构信息,mean、max都不可以
    在这里插入图片描述

  • sum可以学习到更多信息:
    sum 可以捕捉到全部标签及其数量,mean 只能学习到标签的相对分布信息(标签比例),max 则偏向于学习具有代表性的信息(标签集合)
    在这里插入图片描述

3 作业

这里是引用在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 代码实现

4.1 基于GIN的图表征模块 GINGraphRepr Module

基于图同构网络(Graph Isomorphism Network, GIN)的图表征学习主要包含以下两个过程

  1. 首先计算得到节点表征
  2. 其次对图上各个节点的表征做图池化(Graph Pooling),或称为图读出(Graph Readout),得到图的表征(Graph Representation)

若要进行图预测,则可以加多一个线性层,将图表征转换为预测结果

  • 代码实现:
    • 求得节点表征:首先采用GINNodeEmbedding模块对图上每一个节点做节点嵌入(Node Embedding)
    • 求得图表征:对节点表征做图池化
    • 图的预测:最后用一层线性变换将图表征转换为预测结果
import torch
from torch import nn
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool, GlobalAttention, Set2Set
from gin_node import GINNodeEmbedding

class GINGraphRepr(nn.Module):

    def __init__(self, num_tasks=1, num_layers=5, emb_dim=300, residual=False, drop_ratio=0, JK="last", graph_pooling="sum"):
        """
        Args:
            num_tasks (int, optional): 图表征维度,默认1
            num_layers (int, optional): GINConv 层数,默认5
            emb_dim (int, optional): 节点维度,默认300
            residual (bool, optional): adding residual connection or not. Defaults to False.
            drop_ratio (float, optional): dropout rate. 默认0
            JK (str, optional): 可选的值为"last"和"sum"。选"last",只取最后一层的结点的嵌入,选"sum"对各层的结点的嵌入求和。默认"last"
            graph_pooling (str, optional): 图池化方式. 可选的值为"sum","mean","max","attention"和"set2set"。 默认 "sum".

        Out:
            graph representation
        """
        
        super(GINGraphPooling, self).__init__()

        self.num_layers = num_layers
        self.drop_ratio = drop_ratio
        self.JK = JK
        self.emb_dim = emb_dim
        self.num_tasks = num_tasks

        if self.num_layers < 2:
            raise ValueError("Number of GNN layers must be greater than 1.")


        self.gnn_node = GINNodeEmbedding(num_layers, emb_dim, JK=JK, drop_ratio=drop_ratio, residual=residual)


        # Pooling function to generate whole-graph embeddings
        if graph_pooling == "sum":
            self.pool = global_add_pool
        elif graph_pooling == "mean":
            self.pool = global_mean_pool
        elif graph_pooling == "max":
            self.pool = global_max_pool
        elif graph_pooling == "attention":
            self.pool = GlobalAttention(gate_nn=nn.Sequential(
                nn.Linear(emb_dim, emb_dim), nn.BatchNorm1d(emb_dim), nn.ReLU(), nn.Linear(emb_dim, 1)))
        elif graph_pooling == "set2set":
            self.pool = Set2Set(emb_dim, processing_steps=2)
        else:
            raise ValueError("Invalid graph pooling type.")

        if graph_pooling == "set2set":
            self.graph_pred_linear = nn.Linear(2*self.emb_dim, self.num_tasks)
        else:
            self.graph_pred_linear = nn.Linear(self.emb_dim, self.num_tasks)


    def forward(self, batched_data):
        h_node = self.gnn_node(batched_data)

        h_graph = self.pool(h_node, batched_data.batch)
        output = self.graph_pred_linear(h_graph)

        if self.training:
            return output
        else:
            # At inference time, relu is applied to output to ensure positivity
            # 因为预测目标的取值范围就在 (0, 50] 内
            return torch.clamp(output, min=0, max=50)

4.2 GINConv图同构卷积层

4.2.1 接口函数


GINConv(nn: Callable, eps: float = 0.0, train_eps: bool = False, **kwargs)

  • nn(torch.nn.Module):输入一个神经网络学习节点特征,如通过torch.nn.Sequential定义的神经网络
  • eps(float, optional):即 ϵ \epsilon ϵ,默认0
  • train_eps(bool, optional):True则 ϵ \epsilon ϵ 是可学习的,默认False
  • **kwargs(optional) – Additional arguments of torch_geometric.nn.conv.MessagePassing

无法处理边属性

4.2.2 重写一个支持边属性的GINConv模块

同样遵循MessagePassing“消息传递、消息聚合、消息更新”的过程

import torch
from torch import nn
from torch_geometric.nn import MessagePassing
import torch.nn.functional as F
from ogb.graphproppred.mol_encoder import BondEncoder


### GIN convolution along the graph structure
class GINConv(MessagePassing):
    def __init__(self, emb_dim):
        '''
            emb_dim (int): node embedding dimensionality
        '''
        super(GINConv, self).__init__(aggr = "add")

        self.mlp = nn.Sequential(nn.Linear(emb_dim, emb_dim), nn.BatchNorm1d(emb_dim), nn.ReLU(), nn.Linear(emb_dim, emb_dim))
        self.eps = nn.Parameter(torch.Tensor([0]))
        self.bond_encoder = BondEncoder(emb_dim = emb_dim)

    def forward(self, x, edge_index, edge_attr):
        edge_embedding = self.bond_encoder(edge_attr) # 先将类别型边属性转换为边表征
        out = self.mlp((1 + self.eps) *x + self.propagate(edge_index, x=x, edge_attr=edge_embedding))
        return out

    def message(self, x_j, edge_attr):
        return F.relu(x_j + edge_attr)
        
    def update(self, aggr_out):
        return aggr_out

  • 14
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
智能合约的漏洞检测是一个重要的研究领域,基于神经网络(GNN)的方法近年来受到了广泛关注。GNN可以有效地对智能合约的代码进行建模,从而揭示潜在的漏洞。 基于GNN的智能合约漏洞检测方法通常包括以下步骤: 1. 构建合约代码的表示:将合约代码表示为一个结构,其中合约中的函数和变量作为节点,它们之间的关系作为边。这样可以将合约代码的结构和依赖关系编码到中。 2. 特征提取:对于每个节点和边,可以提取相应的特征,例如节点的类型、边的类型和方向等。这些特征可以通过对合约代码进行静态分析或者使用预训练的嵌入模型获得。 3. 神经网络模型:使用GNN模型对进行学习和表示学习。GNN可以通过迭代地聚合节点和边的信息来学习节点和边的表示,从而得到整个的表示。常用的GNN模型包括Graph Convolutional Networks (GCN)、GraphSAGE和Gated Graph Neural Networks (GGNN)等。 4. 漏洞检测:通过学习得到的表示,可以使用分类器或者生成器来进行漏洞检测。分类器可以预测每个节点或者边是否存在漏洞,而生成器可以生成新的合约代码,以验证是否存在漏洞。 总的来说,基于GNN的智能合约漏洞检测方法可以充分利用合约代码的结构信息,辅助开发者发现和修复潜在的漏洞。这些方法在实际的智能合约安全分析中具有潜力和应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值