应用时间序列案例-基于R语言

一.搜集数据

选取2019年3月到2022年3月的邮政业务总量当期值(月季度)如下:

xy
11138.7
2962.7
31252.9
41289
51381.4
61212.5
71190.5
81111.1
91089.1
101194
111132.4
121069.2
131141.9
14694.6
151192.8
162300.3
172416.5
182044.7
191984.1
201809.8
211732.6
221843.5
231812.5
241633.4
251554.3
26840
271712.3
281795.5
291473.1
301419.4
311349.2
321321.8
331369.1
341309.4
351245.6
361255.6

二.数据处理与分析

根据以上流程图开始分析(该图来自公众号“狗熊会”,我不允许还有统计学子没有关注他)

2.1平稳性检验

首先利用R语言画出时序图

library(readxl)
data <- read_excel("data.xlsx")
View(data)                                                                                
sh<-ts(data$y,start=data$x)
plot(sh)#sh为自定义名称

得到如下结果时序图

 是不是感觉它第一,没有周期性,第二没有趋势性,那是不是就是平稳序列了?nonono,差点就被骗了,因此我继续了对它进行单位根检验

library(tseries)#这个需要安装一下包,install.packages("tseries")
adf.test(data$y)

可以得到以下结果

 可以看到它的p值是远远大于0.05啊(哭泣

所以接下来将非平稳序列转化为平稳序列,采用2步一阶差分,参考R语言实现时间序列之8种平稳化方法_kh5lc的博客-CSDN博客_序列平稳化的方法

y1<-diff(data$y,2,1)
adf.test(y1)

得到如下结果

很叭戳!p值小于0.05,因此可以认为现在的数据是平稳序列了!

可以看看它的时序图

 看一下差分后的acf图

acf(y1)

可见样本自相关系数大部分都在2倍标准范围内

 2.2 白噪声检验

Box.test(y2,lag=3,type='L')#lag取值根据acf图决定

得到的结果如下:

 可见p值远小于0.05,因此可以认为差分后的序列为非白噪声序列

三.模型建立

3.1根据acf图和pacf图确定模型的阶数

acf图:

 pacf图:

 可以认为acf图是3阶拖尾,pacf是2阶拖尾,因此确定模型为ARIMA(2,1,3)

3.2 参数估计

model<-arima(y1,order=c(2,1,3),method="ML")
model

得到如下结果

 第一行输出的是参数估计值,第二行输出的是参数估计值的样本标准差

因此该ARIMA(2,1,3)的表达式为

四.模型检验         

4.1 模型显著性检验

tsdiag(model)

得到如下结果:

 由最后一个图可以看出所有的点都在虚线上方,即所有Q统计量的p值均大于显著性水平0.05,此时可认为该模型显著成立。

五.模型预测
library("forecast")
fore<-forecast(model,h=10)#h为预测期数
plot(fore,lty=2)
lines(fore$fitted,col=4)#虚线为观察值,实线为拟合值

结果如下:

 

译者序 前言 第1章 引论 1.1 时间序列举例 1.2 建模策略 1.3 历史上的时间序列图 1.4 本书概述 习题 第2章 基本概念 2.1 时间序列与随机过程 2.2 均值、方差和协方差 2.3 平稳性 2.4 小结 习题 附录A 期望、方差、协方差和相关系数 第3章 趋势 3.1 确定性趋势与随机趋势 3.2 常数均值的估计 3.3 回归方法 3.4 回归估计的可靠性和有效性 3.5 回归结果的解释 3.6 残差分析 3.7 小结 习题 第4章 乎稳时间序列模型 4.1 一般线性过程 4.2 滑动乎均过程 4.3 自回归过程 4.4 自回归滑动平均混合模型 4.5 可逆性 4.6 小结 习题 附录B AR(2)过程的平稳域 附录C ARMA(p,g)模型的自相关函数 第5章 平稳时间序列模型 5.1 通过差分平稳化 5.2 ARIMA模型 5.3 ARIMA模型中的常数项 5.4 其他变换 5.5 小结 习题 附录D 延迟算子 第6章 模型识别 6.1 样本自相关函数的性质 6.2 偏白相关函数和扩展的自相关函数 6.3 对一些模拟的时间序列数据的识别 6.4 非平稳性 6.5 其他识别方法 6.6 一些真实时间序列的识别 6.7 小结 习题 第7章 参数估计 7.1 矩估计 7.2 最小二乘估计 7.3 极大似然与五条件最小二乘 7.4 估计的性质一 7.5 参数估计例证 7.6 自助法估计ARIMA模型 7.7 小结 习题 第8章 模型诊断 8.1 残差分析 8.2 过度拟合和参数冗余 8.3 小结 习题 第9章 预测 9.1 最小均方误差预测 9.2 确定性趋势 9.3 ARIMA预测 …… 第10章 季节模型 第11章 时间序列回归模型 第12章 异议差时间序列模型 第13章 谱分析入门 第14章 谱估计 第15章 门限模型 参考答案
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值