R语言数据分析案例44-基于时间序列模型对股票预测分析和研究

一、研究背景和意义

随着全球经济的不断发展和数字化转型的加速推进,科技公司在全球市场中扮演着日益重要的角色。其中,中国的阿里巴巴集团作为全球最大的电子商务公司之一,其业务范围覆盖电子商务、云计算、金融科技等多个领域。由于其在中国及全球市场的影响力和市值巨大,阿里巴巴的股票价格不仅关乎公司自身的发展状况,也反映了中国和全球经济的整体走势。股票价格是金融市场最直观、最重要的指标之一,对于投资者、分析师和政策制定者来说,了解和预测股票价格的波动具有重要的意义。时间序列分析作为一种经典的统计方法,可以帮助我们深入理解阿里巴巴股票价格的走势规律,为投资决策和风险管理提供可靠的依据。。。。

二、研究综述

在国内研究方面,翁紫霞为提供可参考的投资建议,提高投资者在股票市场的收益,基于建设银行 2019 年 1 月 2 日—2022 年11 月 14 日每个交易日共计 939 组收盘价数据,应用 ARIMA 模型对股价进行预测和分析。结果显示,应用 ARIMA 模型可对短期内股价进行很好的预测,但因股票市场受多种多重因素的影响,进行长期预测时可能存在较大误差,需要深入探索更为准确的股价预测模型[1]。。。。姚金海通过构建一个基于ARIMA与信息粒化SVR的组合预测模型,对股票市场指数价格和收益变化的趋势进行预测。实证研究结果表明:基于ARIMA与信息粒化SVR组合的股指预测模型相较于传统时间序列模型而言,在预测精度和效度方面有较大提升,能够在一定时间周期内对股票等风险资产的价格波动区间进行较为可靠地预测[7]。。。。

三、理论部分

ARIMA模型为自回归移动平均模型,这是一个当选取的序列是非平稳序列时,能够通过差分、季节分解等一系列方法后将该序列变为平稳序列,随后继续建模的一个模型

指数平滑法是一种常用于时间序列预测的简单但有效的方法之一。它的核心思想是利用过去观测值的加权平均来预测未来的值,其中过去观测值的权重随时间指数级衰减。

季节性自回归整合移动平均模型(Seasonal Autoregressive Integrated Moving Average,sARIMA)是一种用于处理具有季节性的时间序列数据的方法。它是ARIMA模型的扩展,专门设计用于捕捉数据中的季节性变化。。。。

四、实证分析

本研究使用的数据来自阿里巴巴(股票代码:SW9988)的股票市场交易数据,涵盖了从 2022 年 1 月 1 日到 2024 年 3 月 12 日的时间范围。这段时间内的交易数据记录了阿里巴巴股票在市场中的各种表现和变化。

数据和代码

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值