思路
问题转化蛮巧妙的。主要边恰好构成一棵树,考虑只添加一条附加边<x,y>,则恰好构成一个环,如果第一步选择切断x,y之间路径的某条主要边,则第二步必须切断<x,y>,才能分成不连通的两部分。
所以相当于每条附加边<x,y>都把x,y路径上的主要边覆盖了一次,
1.若第一步把被覆盖了0次的主要边切断,则第二步可以切断任意一条附加边
2.若第一步把覆盖了1次的主要边切断,则第二步仅有一种切法。
3.若第一步切断的边被覆盖次数大于1,则显然第二步无解。
因此转化成一个树上差分问题。
代码
const int maxn = 1e5 + 10;
const int maxm = 3e5+ 10;
int n;
int Log2[maxn], fa[maxn][30], dep[maxn];
bool vis[maxn];
int head[maxn];
int p;
struct Edge {
int to, dis = 1, next;
}edge[maxm];
void dfs(int cur = 1, int fath = 0) {
if(vis[cur]) return;
vis[cur] = true;
dep[cur] = dep[fath] + 1;
fa[cur][0] = fath;
for(int i = 1; i <= Log2[dep[cur]]; i++)
fa[cur][i] = fa[fa[cur][i-1]][i-1];
for(int i = head[cur]; i; i = edge[i].next)
dfs(edge[i].to, cur);
}
int lca(int a, int b) {
if(dep[a] > dep[b])
swap(a, b);
while(dep[a] != dep[b])
b = fa[b][Log2[dep[b]-dep[a]]];
if(a == b)
return a;
for(int k = Log2[dep[a]]; k >= 0; k--) //跳跃长度从长到短
if(fa[a][k] != fa[b][k]) {
a = fa[a][k];
b = fa[b][k];
}
return fa[a][0];
}
void init() {
for(int i = 1; i <= n; i++) {
dep[i] = 0;
head[i] = 0;
}
p = 0;
for(int i = 2; i <= n; i++)
Log2[i] = Log2[i / 2] + 1;
}
void add_edge(int u, int v, int w) {
p++;
edge[p].to = v;
edge[p].dis = w;
edge[p].next = head[u];
head[u] = p;
}
int m;
int f[maxn];
int ans[maxn];
void dfs2(int cur = 1, int fath = 0) {
// if(vis[cur]) return;
// vis[cur] = 1;
for(int i = head[cur]; i; i = edge[i].next) {
int to = edge[i].to;
if(to == fath) continue;
dfs2(to, cur);
ans[cur] += ans[to];
}
ans[cur] += f[cur];
}
void solve() {
cin >> n >> m;
init();
for(int i = 1; i < n; i++) {
int u, v;
cin >> u >> v;
add_edge(u, v, 1);
add_edge(v, u, 1);
}
dfs();
for(int i = 1; i <= m; i++) {
int u, v;
cin >> u >> v;
int fat = lca(u, v);
f[u]++;
f[v]++;
f[fat] -= 2;
}
memset(vis, 0, sizeof(vis));
dfs2();
int res = 0;
for(int i = 2; i <= n; i++) {
if(ans[i] == 0) res += m;
else if(ans[i] == 1) res++;
}
cout << res << endl;
}