##智能优化算法复习--粒子群算法(PSO)

本文介绍了粒子群优化算法(PSO)的原理和应用,它是目前应用最为广泛的群体智能优化算法。PSO通过模拟鸟群寻找食物的过程,利用个体学习因子和社交学习因子进行迭代优化,寻找问题的最优解。文章还详细阐述了算法的步骤,包括种群初始化、速度和位置更新,并以0-1背包问题为例展示了PSO的应用。
摘要由CSDN通过智能技术生成

目前常见的群体智能优化算法主要有如下几类:
  (1)蚁群算法(Ant Colony Optimization,简称ACO)[1992年提出];
  (2)粒子群优化算法(Particle Swarm Optimization,简称PSO)[1995年提出](简单易于实现,也是目前应用最为广泛的群体智能优化算法);
  (3)菌群优化算法(Bacterial Foraging Optimization,简称BFO)[2002年提出];
  (4)蛙跳算法(Shuffled Frog Leading Algorithm,简称SFLA)[2003年提出];
  (5)人工蜂群算法(Artificial Bee Colony Algorithm,简称ABC)[2005年提出];
  除了上述几种常见的群体智能算法以外,还有一些并不是广泛应用的群体智能算法,比如萤火虫算法、布谷鸟算法、蝙蝠算法以及磷虾群算法等等。

下面来主要介绍使用最多的粒子群算法

首先来介绍其原理:

在PSO中,每个优化问题的解都是搜索空间中的一只鸟,称之为"粒子",而问题的最优解就对应于鸟群中寻找的食物。所有的粒子都具有一个位置向量(粒子在解空间的位置)和速度向量(决定下次飞行的方向和速度),并可以根据目标函数来计算当前的所在位置的适应值(fitness value),可以将其理解为距离食物的距离。在每次的迭代中,种群中的例子除了根据自身的经(历史位置)进行学习以外,还可以根据种群中最优粒子的"经验"来学习,从而确定下一次迭代时需要如何修正和改变飞行的方向和速度。就这样逐步迭代,最终整个种群的例子就会逐步趋于最优解。

举个简单的鸟群例子看一看

现在,我们的主角是一群鸟。小鸟们的目标很简单,要在这一带找到食物最充足的位置安家、休养生息。试着想一下一群鸟在寻找食物,在这个区域中只有一只虫子,所有的鸟都不知道食物在哪。但是它们知道自己的当前位置距离食物有多远,同时它们知道离食物最近的鸟的位置

想一下这时候会发生什么?

鸟A:哈哈哈原来虫子离我最近!
鸟B,C,D:我得赶紧往 A 那里过去看看!

同时各只鸟在位置不停变化时候离食物的距离也不断变化,所以一定有过离食物最近的位置,这也是它们的一个参考。

鸟某某:我刚刚的位置好像靠近了食物,我得往那里靠近!
(鸟类的这几种想法是粒子群算法的核心)

有了这样的想法,它们在这个地方的搜索策略如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值