##智能优化算法复习--遗传算法

遗传算法是一种模拟生物进化过程的智能优化算法,适用于解决NP问题和非线性优化问题。它包括初始化种群、选择、交叉和变异等步骤。常见的编码方式有二进制、格雷码、实数编码等,适应度函数的选择影响解的质量,选择操作如轮盘赌选择,交叉操作如单点、两点交叉,变异操作包括基本位变异等。
摘要由CSDN通过智能技术生成

智能优化算法

#总述

智能优化算法分为进化类算法,群智能算法,以及模拟退火算法(SA),禁忌搜索算法(TS),神经网络算法(GNN),其中进化类算法包括遗传算法(GA),差分进化算法(DE),免疫算法(IA)等,其中群智能算法主要有粒子群算法(PSO),蚁群算法(ACO)等等

下面来逐一讲述

  • 遗传算法(GA) 

  • 遗传算法是模拟生物在自然环境中的遗传和进化的过程而形成的自适应全局优化搜索算法。其特点高效,实用,鲁棒性强等特点。能有效的求解NP问题以及非线性、多峰函数优化和多目标优化问题。

多的不说,来讲主要内容吧

1.主要思想

   遗传算法是受生物进化过程中“优胜劣汰”的自然选择机制和遗传信息传递规律的启发,所提出的一种智能优化算法。遗传算法通过初始化种群、复制操作、交叉操作、变异操作几个步骤,模拟自然界生物进化过程中的繁殖行为与竞争行为,衍生出下一代的个体,再根据适应度的大小进行个体的优胜劣汰,提高新一代群体的质量,在经过反复多次迭代,逐步逼近复杂工程技术问题的最优解。

2.主要步骤

(1)初始化种群的产生(编码)

常见的编码方式有:

1、二进制编码

基因用0或1表示(常用于解决01背包问题)   

                

2、格雷码编码

连续的两个整数所对应的编码之间仅仅只有一个码位是不同的,其余码位都相同。

3、实数(浮点数)编码

个体的每个基因值用某一范围内的某个浮点数来表示,个体的编码长度等于其决策变量的位数,只能用于连续变量问题。

5、互换编码

用于解决排序问题,如旅行商问题和调度问题。

如旅行商问题中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值