由二项式公式推导平方和与立方和公式

一、前n个数的和


\Sigma_{k=1}^{n}k=\frac{​{\left(n+1\right)}\times n}{2}

二、平方和公式


​​​​​​​\begin{aligned} \Sigma_{k=1}^{n}k^{2}&=1^{2}+2^{2}+\dots+n^{2}\\ &=\frac{​{\left(2n+1 \right )}\times {\left(n+1 \right)}\times n}{6} \end{aligned}

求证

\because{\left(a+b \right )}^{n}=\Sigma_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k}\\ \therefore{\left(a+b\right)}^{3}=a^{3}+3a^{2}b^{1}+3a^{1}b^{2}+b^{3}

\because \left\{ \begin{array}{lll} 1^3&={\left(0+1 \right)}^3&=0^3+3\times 0^2\times 1^1+3\times 0^1\times 1^2+1^3\\ 2^3&={\left(1+1 \right)}^3&=1^3+3\times 1^2\times 1^1+3\times 1^1\times 1^2+1^3\\ 3^3 &= {\left(2+1 \right)}^3 &= 2^3+3\times 2^2\times 1^1+3\times 2^1\times 1^2+1^3\\ &\dots\\ n^3&={\left[\left(n-1 \right)+1\right ]}^3 &= {\left(n-1 \right )}^3+3\times {\left(n-1 \right )}^2\times 1^1+3\times {\left(n-1 \right )}^1\times 1^2+1^3 \end{array} \right. \\ \\ \\ \therefore \Sigma_{k=1}^{n}k^{3}={\left(\Sigma_{k=1}^{n-1}k^{3} \right )}+3\times {\left(\Sigma_{k=1}^{n-1}k^{2} \right )}+3\times {\left(\Sigma_{k=1}^{n-1}k \right )}+n

\because {\left\{ \begin{aligned} \Sigma_{k=1}^{n}k^{3}&=n^{3}+\Sigma_{k=1}^{n-1}k^{3}\\ \Sigma_{k=1}^{n}k&=\frac{​{\left(n+1\right)}\times n}{2} \end{aligned} \right.}\\\\ \therefore \begin{aligned} n^{3}&=3\times \Sigma_{k=1}^{n-1}k^{2}+3\times \frac{​{\left(n-1+1 \right )}{\left(n-1 \right )}}{2}+n\\ \Sigma_{k=1}^{n-1}&=\frac{​{\left[{\left(2n-3 \right )}\times n+1 \right ]}\times n}{6} \end{aligned}\\\\\\ \therefore \Sigma_{k=1}^{n}k^{2}=\frac{​{\left(2n+1 \right )}\times {\left(n+1 \right )}\times n}{6}

三、立方和公式


\begin{aligned} \Sigma_{k=1}^{n}k^3&=1^{3}+2^{3}+\dots+n^{3}\\ &={\left[\frac{n\times {\left(n+1 \right)}}{2} \right ]}^{2} \end{aligned}

求证

\because {\left(a+b \right )}^{4}=a^{4}+4a^{3}b^1+6a^{2}b^{2}+4a^{1}b^{3}+b^{4}\\ \\ \therefore \left\{\begin{array}{lll} 1^4&={\left(0+1 \right )}^{4}&=0^{4}+4\times 0^{3}\times 1^{1}+6\times 0^{2}\times 1^{2}+4\times 0^{1}\times 1^{3}+1^4\\ 2^4&={\left(1+1 \right )}^{4}&=1^{4}+4\times 1^{3}\times 1^{1}+6\times 1^{2}\times 1^{2}+4\times 1^{1}\times 1^{3}+1^4\\ 3^4&={\left(2+1 \right )}^{4}&=2^{4}+4\times 2^{3}\times 1^{1}+6\times 2^{2}\times 1^{2}+4\times 2^{1}\times 1^{3}+1^4\\ &\dots\\ 1^4&={\left[{\left(n-1\right)}+1 \right ]}^{4}&={\left(n-1 \right )}^{4}+4\times {\left(n-1 \right )}^{3}\times 1^{1}+6\times {\left(n-1 \right )}^{2}\times 1^{2}+4\times {\left(n-1 \right )}^{1}\times 1^{3}+1^4\\ \end{array}\right.

由上得

\Sigma_{k=1}^{n}k^{4}={\left(\Sigma_{k=1}^{n-1}k^{4} \right )}+4\times {\left(\Sigma_{k=1}^{n-1}k^{3} \right )}+6\times {\left(\Sigma_{k=1}^{n-1}k^{2} \right )}+4\times {\left(\Sigma_{k=1}^{n-1}k \right )}+n

\because \left\{ \begin{aligned} \Sigma_{k=1}^{n}k&=\frac{​{\left(1+n \right )}\times n}{2} \\ \Sigma_{k=1}^{n}k^{2}&=\frac{​{\left(2n+1 \right )}\times {\left(n+1 \right )}\times n}{6}\\ \Sigma_{k=1}^{n}k^4&=n^{4}+\Sigma_{k=1}^{n-1}k^{4} \end{aligned}\right.\\ \\ \\ \therefore \begin{aligned} n^{4}&=4\times {\left(\Sigma_{k=1}^{n-1}k^{3} \right )}+6\times \frac{​{\left(2n-1 \right )}\times n\times{\left(n-1 \right )}}{6}+4\times\frac{n\times {\left(n-1 \right )}}{2}+n\\ &=4\times {\left(\Sigma_{k=1}^{n-1}k^{3} \right )}+{\left(2n-1 \right )}\times n\times{\left(n-1 \right )}+2n\times {\left(n-1 \right )}+n\\ &=4\times {\left(\Sigma_{k=1}^{n-1}k^{3} \right )}+2\times n^{3}-n^{2} \end{aligned}

\because \left\{ \begin{aligned} n^{4}&=4\times {\left(\Sigma_{k=1}^{n-1}k^{3} \right )}+2\times n^{3}-n^{2}\\ \Sigma_{k=1}^{n-1}k^{3}&=\frac{n^{2}\times {\left(n-1 \right )}^{2}}{4}={\left[\frac{n\times {\left(n-1 \right )} }{2}\right ]}^{2} \end{aligned}\right.\\\\\\ \therefore \Sigma_{k=1}^{n}={\left[\frac{n\times {\left(n+1 \right )} }{2}\right ]}^{2}

由上看出用二项式公式不单可以推导出前n个数的平方和、立方和公式,还可以推导出前n个数的任意次幂的和公式。

四、案例

​​​​​​​\begin{aligned} S_{n}&=1\times2+2\times 3+3\times 4+\dots+n\times{\left(n+1 \right )}\\ &=\Sigma_{k=1}^{n}k(k+1) \end{aligned}

\because k\times{\left(k+1 \right )}=k^{2}+k\\\\\therefore \Sigma_{k=1}^{n}k{\left(k+1\right)}=\Sigma_{k=1}^{n}k+\Sigma_{k=1}^{n}k^{2}

\because \left\{ \begin{aligned} \Sigma_{k=1}^{n}k&=\frac{​{\left(n+1 \right )}}{2}\times n\\ \Sigma_{k=1}^{n}k^{2}&=\frac{​{\left(2n+1\right)}\times {\left(n+1 \right )}\times n}{6} \end{aligned}\right.\\\\\\ \begin{aligned} \therefore S_{n}&=\frac{​{\left(n+1 \right )}\times n}{2}+\frac{​{\left(2n+1\right)}\times {\left(n+1 \right )}\times n}{6}\\ &=\frac{n\times{\left(n+1 \right )}\times{\left(n+2 \right )}}{3} \end{aligned}

五、参考

关于前n个自然数的平方和公式的证明方法​​​​​​​

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值