费马小定理 (证明)

5 篇文章 0 订阅
4 篇文章 0 订阅

费马小定理


费马小定理:a^(p-1) ≡ 1(mod p)
前提:p为质数,且a,p互质         //互质:a和p相同的因数为1.

先来看一下≡是什么:
a ≡ b (mod p) <=> a mod p = b mod p    //a和b在模p的意义下同余
注释:<=> 两边相等


在证明之前,先给出引理:

(1):如果p,c互质,并且a*c≡b*c(mod p)

证明过程:
∵a*c mod p = b*c mod p

∴(a*c - b*c) mod p = 0

∴(a-b)*c mod p = 0;

∴(a-b)*c 是p的倍数

∵p,c互质

∴k*p*c mod p = 0    //仔细看,这里的k*p是不是相当与上面的(a-b)?

∴(a-b) = k*p

∴(a-b) mod p = 0

 

(2) 若a1,a2,a3,a4,am 为 mod m的完全剩余系,m,b互质,那么
b*a1,b*a2,b*a3,b*a4......b*am也是mod m的完全剩余系。
P.S:完全剩余系:从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系。


证明过程://利用反证法
假设存在一个 b*ai ≡ b*aj (mod p),由引理(1)可证 ai ≡ aj (mod p)
所以这个假设不成立。所以引理(2)成立。

回归正题

我们终于开始费马小定理的证明:

0,1,2,3,4...p-1是p的完全剩余系

∵a,p互质

∴a,2*a,3*a,4*a.......(p-1)*a也是mod p的完全剩余系

∴1*2*3.........*(p-1)*a ≡ a*2*a*3*a......(p-1)*a  (mod p)

∴ (p-1)! ≡ (p-1)!*a^(p-1) (mod p)

两边同时约去(p-1)!

a^(p-1) ≡ 1 (mod p)

你以为完了吗?不,还没有,我们还可以用欧拉定理来证

对于质数p,任意整数a,均满足:ap≡a(mod p)

证明如下:

  这个可以用欧拉定理来说明:

       首先,我们把这个式子做一个简单变换得:ap-1 * a ≡ a(mod p) 

       因为a ≡ a(mod p)恒成立,所以ap-1 mod p == 1 时费马小定理才成立,

       又因为p是质数,所以 φn == n-1 ,

       所以根据欧拉定理:若a,p互质则ap-1 mod p == 1成立。

       那么对于a,p不互质,因为p是质数,所以,a一定是倍数 ap ≡ a ≡ 0(mod p)。

       综上所述,费马小定理成立,其实它算是欧拉定理的一个特例。

  • 4
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值