实战案例:利用 Transformer 网络进行时间序列模型预测(附完整 Python 代码)

我最近读了一篇非常有趣的论文:Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case。这可能是一个有趣的项目,从零开始实施类似的东西,以了解更多关于时间序列预测。

预测任务:

在时间序列预测中,目标是根据时间序列的历史价值预测其未来价值。时间序列预测任务的一些例子如下:

  • 预测流感流行个案:Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case

  • 能源产量预测:Energy consumption forecasting using a stacked non-parametric Bayesian approach

  • 天气预报:MetNet: A Neural Weather Model for Precipitation Forecasting

例如,我们可以将一个城市的能源消耗量数据存储几个月,然后训练一个模型,该模型将能够预测该城市未来的能源消耗。这可以用来估计能源需求,因此能源公司可以使用这个模型来估计在任何特定时间需要生产的能源的最佳价值。

源码&技术交流

本文项目源码、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友

方式①、添加微信号:dkl88191,备注:来自CSDN +研究方向
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:tf时间序列

时间序列预测实例

我们将使用的模型是一个编解码 Transformer,其中编码器部分作为输入的历史时间序列,而解码器部分以自回归的方式预测未来的价值。

解码器使用注意机制与编码器连接。通过这种方式,解码器可以学会在进行预测之前“关注”时间序列中最有用的部分历史值。

解码器使用 masked self-attention,使网络不能在训练运行过程中通过预测未来值来预测过去值来作弊。

编码器子网络:

解码器子网络:

完整模型:

自回归编/解码 Transformer

这个体系结构可以使用 PyTorch 构建,方法如下:

encoder_layer = nn.TransformerEncoderLayer(
    d_model=channels,
    nhead=8,
    dropout=self.dropout,
    dim_feedforward=4 * channels,
)
decoder_layer = nn.TransformerDecoderLayer(
    d_model=channels,
    nhead=8,
    dropout=self.dropout,
    dim_feedforward=4 * channels,
)

self.encoder = torch.nn.TransformerEncoder(encoder_layer, num_layers=8)
self.decoder = torch.nn.TransformerDecoder(decoder_layer, num_layers=8)

数据

每次我实现一种新的方法时,我都喜欢首先在合成数据上进行尝试,以便更容易理解和调试。这降低了数据的复杂性,并且更加关注于实现/算法。

我编写了一个小脚本,可以生成具有不同周期、偏移量和模式的非平凡时间序列。

def generate_time_series(dataframe):

    clip_val = random.uniform(0.3, 1)

    period = random.choice(periods)

    phase = random.randint(-1000, 1000)

    dataframe["views"] = dataframe.apply(
        lambda x: np.clip(
            np.cos(x["index"] * 2 * np.pi / period + phase), -clip_val, clip_val
        )
        * x["amplitude"]
        + x["offset"],
        axis=1,
    ) + np.random.normal(
        0, dataframe["amplitude"].abs().max() / 10, size=(dataframe.shape[0],)
    )

    return dataframe

生成的时间序列示例

然后,该模型同时对所有这些时间序列进行训练:

训练损失

结果

我们现在使用这个模型来预测这些时间序列的未来价值,结果有点喜忧参半:

错误的

错误预测的例子

正确的

正确预测的例子

结果并不像我预期的那么好,特别是考虑到通常很容易对合成数据做出好的预测,但是他们仍然是让人有所期待的。

该模型的预测有点不同步与轻微的振幅高估了一些不良的例子。在好的例子中,除去噪音,这个预测非常符合实际情况。

我可能需要调试我的代码多一点,并在优化超参数之前,我可以期望得到更好的结果。

六级在大学bai各类考试中占有相当du重要的地位。在大四在校签订单位的时候,绝大多zhi数公司都有英语要求:通dao过四。真正进入社会以后,随着现在英语的普及,很多地方,很多事情,都会用到英语,具有一定的英语水平,能够让你在工作中出色不少。 大学英语四六级对毕业后求职的重要性: 关系到能不能拿到毕业证 我不敢说全国,最起码在广东,重本的211和985的名牌大学,大部分四六级证书是和毕业证挂钩的。可能还没到就业,万一你的全国英语四考试达不到425分,你就拿不到你的毕业证书。所以四六级你说重不重要? 是一半企业的敲门砖 (1)随着大学生毕业人数的增长,社会面临的就业压力越来越大,企业为了挑选人才,国企和外企一般都会把四六级证书作为一个最低的门槛。 (2)虽然说全国英语四六级证书只是一张纸,并不能证明一个人的英语水平,但是四的合格线设在425分对于国内大学生英语要求还是比较低的。所以如果你没有通过英语四的证书,很多企业在筛选简历时就会把你直接out了。 (3)可以说如果你没有通过大学英语四六级的考试,你的前途就暗淡了一半,很多企业都不会为你敞开大门。当然,如果你有关系的话什么证书都是扯淡。 海外合作是大势所趋 (1)现在这个社会,海外人员越来越多,海外合作的公司也越来越多,走在街上,说不定一天能遇到好几个问路的外国人。所以如果你没有能证明你英语能力的一纸证书,你很难向公司证明你的外语水平和能力。 (2)在北上广深,就连现在的计程车司机也有一定的英语基础,否则生意就很难做下去。所以说在日常生活中,我们也有很多机会和外国人打交道,在这个海外合作是大势所趋的年代,英语能力更为重要。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值