学习笔记
文章平均质量分 85
Python数据开发
这个作者很懒,什么都没留下…
展开
-
《算法岗面试宝典》重磅发布!
薪资真香、技术难度真大、要求真的很全面,但不是没有方法可循、可借鉴的。业务知识 + 专业知识 + 编程基础能力+刷题(LeetCode/剑指Offer) + 项目 + 实习 + 竞赛 +顶会/顶刊+学校针对岗位要求,我在知识星球和《算法面试宝典》中详细给大家介绍。让加入的朋友了解最前沿的知识点,有问题给予专业指导,少栽跟头。这份《算法面试宝典》,文档字数 30w+,我们也在一直更新,涵盖算法岗的方方面面,相信你读完并思考实践后,你一定能有所收获。原创 2024-10-02 14:30:57 · 197 阅读 · 0 评论 -
推荐收藏!Python Flask 项目生产环境部署指南
您已经成功地部署了Flask应用到生产环境中。从更新服务器软件开始,您安装了所需的依赖程序,为应用配置了虚拟环境,并使用Gunicorn和Nginx部署了Flask应用。此外,您也实施了基本的安全措施来保护您的服务器和应用。别忘了定期维护和更新您的服务器和应用来确保一切平稳运行。原创 2024-07-20 22:28:14 · 1710 阅读 · 0 评论 -
基于开源二次开发,我制作了38个酷炫的数据大屏
包含行业:社区、物业、政务、交通、工程、医疗、金融银行等,全网最新、最多,最全、最酷、最炫大数据可视化模板,陆续更新中。大屏幕数据可视化能够将庞大的数据集以图形化的方式展示出来,使人们能够更容易地理解和分析数据。领导和决策者可以通过可视化的方式更容易地了解组织的绩效、趋势和问题,从而做出更明智的战略决策。总体而言,数据可视化大屏通过图形化展示数据,提供了一种更直观、易于理解的方式,对于业务分析、决策支持和团队协作等方面都具有显著的优势。于是,我自己基于开源的基础上,进行基于Python 的二次开发。原创 2024-07-20 22:26:21 · 522 阅读 · 0 评论 -
基于 Python 的车牌检测和识别系统(附源码)
方式①、微信搜索公众号:Python学习与数据挖掘,后台回复:车牌检测和识别系统。方式②、添加微信号:dkl88194,备注:来自CSDN +车牌检测和识别系统。原创 2024-07-20 22:21:28 · 449 阅读 · 0 评论 -
五一抢票难,这个 Python 抢票脚本,你一定要试试
再过一周就要五一啦,大家是打算家里蹲or出去玩,又或者是在公司加班呢…今天给大家介绍三个和相关的项目。原创 2024-04-25 23:21:55 · 738 阅读 · 1 评论 -
Python 三大 Web 框架解析:Flask, Django, Aiohttp
本节介绍了Python中的三个主要Web框架:Flask、Django和Aiohttp,每个框架都有其独特的特点和适用场景。Flask适合快速开发小到中等规模的项目,Django适合开发复杂和数据驱动的Web应用,而Aiohttp适用于需要处理高并发请求的场景。选择哪个框架取决于项目的具体需求、开发团队的熟悉程度以及期望的开发速度。原创 2024-04-20 09:27:41 · 1433 阅读 · 0 评论 -
关于 Python FastAPI ,这 7 件事一定要知道!
我这几天上手体验 FastAPI,感受到这个框架易用和方便。今天继续分享一些技巧。我们可以运行这个 .py 文件,然后在浏览器中访问 localhost:8000/。如果我们运行这个文件并访问 localhost:8000/docs,我们会看到一个包含所有 API 端点的 Swagger UI。使用这个 Swagger UI,我们可以在开发时轻松测试我们的端点。当我们创建一个 POST 端点时,我们需要定义有效负载包含的数据类型。我们使用 pydantic 的 BaseModel 来实现这一点。原创 2024-03-02 17:34:55 · 1088 阅读 · 0 评论 -
面了快手和字节的数据分析岗,收获满满!
面试就要多思考、多总结、多交流,很多问题都是相似的。从三月份开始投暑期实习,简历挂掉一部分,也陆陆续续面试了十几场,很多公司都泡池子了,三面完不发拒信也不给offer,比如某壳一个实习offer都没发。面试下来,问题基本和以上三场面试类似,还有其他问的比较多的是:你最喜欢/最常用的APP是什么,介绍一下APP的基本业务模式,和同类型app对比一下。对于某项业务或产品,你会选取哪些关键指标。费米问题:估算一下北京地区租房需求;估算一下某地区需要多少电脑维修服务网点?原创 2024-02-29 23:53:52 · 1344 阅读 · 0 评论 -
从 Flask 切到 FastAPI 后,起飞了!
退一步讲,Django 和 Flask 是两个最流行的基于 Python 的网络框架(FastAPI 是第三大流行框架)。不过它们(Django 和 Flask)的理念非常不同。Flask 比 Django 的优势在于 Flask 是一个微框架。程序结构由程序员自己决定,不强制执行。开发者可以在他们认为合适的时候添加第三方扩展来改进他们的代码。也就是说,通常情况下,随着代码库的增长,需要一些几乎所有网络应用都需要的通用功能。这些功能与框架的紧密结合,使得终端开发者需要自己创建和维护的代码大大减少。原创 2024-02-29 23:20:10 · 2358 阅读 · 0 评论 -
一文讲清 Python 打包工具 PyInstaller
是一个功能强大且易于使用的工具,可以帮助开发者轻松地将 Python 项目打包为独立的可执行文件,极大地方便了程序的分发和部署。无论你是想要分发一个小工具,还是一个复杂的应用程序,都是一个非常值得考虑的选择。原创 2024-02-24 09:49:03 · 4044 阅读 · 0 评论 -
Dash :一个超漂亮的 python Web库!
你好,Dash 是一个非常方便的 Python 库,它可以非常非常帮助你构建基于 Web 的应用程序,而且最棒的是你无需使用 JavaScript!不仅如此,Dash 还是一个专门用于创建分析 Web 应用程序的用户界面库。如果你是一个使用 Python 进行数据分析、数据挖掘、可视化、建模的人,那么你绝对会喜欢上 Dash。它能够让你立即开始构建高效、互动性强的应用程序,不再为繁琐的 JavaScript 编程而困扰。原创 2024-02-02 22:26:16 · 790 阅读 · 0 评论 -
最全整理!37 个 Python Web 开发框架总结!
大家好,用了 2 周的时间整理了 Python 中所有的网站开发库(下文简称:Web 框架),供大家学习参考。Q:Web 框架到底是什么?A:Web 框架主要用于网站开发。开发者在基于 Web 框架实现自己的业务逻辑。Web 框架实现了很多功能,为实现业务逻辑提供了一套通用方法。Q:Web 框架有什么作用?A:使用 Web 框架,很多的业务逻辑外的功能不需要自己再去完善,而是使用框架已有的功能就可以。Web 框架使得在进行 网站开发的时候,减少了工作量。Q:我们为什么要使用 Web 框架?原创 2024-02-01 22:57:06 · 16373 阅读 · 1 评论 -
仅仅几行 Python 代码,却可帮你快手完成大部分工作
Python 作为一种脚本语言,开发简单,几行代码却能发挥大作用。本文将介绍几种有趣的 Python 脚本,一定能在你的生活和工作中发挥用处。原创 2024-01-04 22:20:57 · 470 阅读 · 0 评论 -
用 Python 提取某一个公众号下的所有文章
通过本文的介绍,我们学习了如何使用Python编写一个爬虫程序,提取某一个公众号下的所有文章。我们通过调用微信公众平台的开放接口,获取文章列表,并从中提取出标题、摘要和链接等关键信息。这样,我们可以快速地获取公众号的文章数据,方便进行进一步的分析和处理。原创 2023-12-30 22:38:23 · 4029 阅读 · 2 评论 -
4个杀手级 Pycharm 高效插件
Pycharm是Python最受欢迎的集成开发环境之一。它具有良好的代码助手、漂亮的主题和快捷方式,使编写代码变得简单快捷。话虽如此,开发者仍可以通过使用一些插件来提高在Pycharm中编写Python代码的效率和乐趣。在市场上,Pycharm有很多免费的插件可以安装。下面是每个Python程序员都应该安装的4个Pycharm插件。其中大部分也可以在DataSpell中找到,DataSpell是一个与Pycharm类似的集成开发环境。原创 2023-12-25 12:24:53 · 1272 阅读 · 0 评论 -
10个得心应手的数据网站,助你完成数据科学项目
本文将介绍10个获取所需数据的网站,助力数据科学项目。当你的数据对你来说很枯燥或毫无意义时,要激励自己学习数据科学,或做数据科学项目真的很困难。本文将介绍10个得心应手的网站,在这些网站上你可以为数据科学项目获取一些非常棒的数据。本文的目的是为了展示各种可能吸引你的数据。最终,这些网站应该能帮助你找到你关心的数据,做一个很酷的数据科学项目,并以此来获得一份工作。原创 2023-12-25 12:15:07 · 2168 阅读 · 0 评论 -
六个优质开源项目,让你更了解Django框架开发
Django 是一个开源的 Web 应用框架,由 Python 写成。采用了 MTV 的框架模式,即模型 M,视图 V 和模版 T。它最初是被用来开发 CMS 软件的,所以 Django 很适合用来搭建内容类网站,它的设计目的是使常见的 Web 开发任务变得快速而简单。今天我就为大家整理了六个优质开源项目,它们均使用 Django 开发,希望大家能从这些项目中有所收获。原创 2023-12-16 17:38:12 · 817 阅读 · 0 评论 -
10个 Python 脚本来自动化你的日常任务
希望你能找到一些新的有趣的东西来让你的日常任务自动化。原创 2023-12-16 15:38:06 · 1310 阅读 · 0 评论 -
一文读懂FastAPI:Python 开发者的福音
接下来,我们可以定义我们的接口。"}在上面的例子中,我们定义了一个GET请求的接口,路径为"/hello"。当访问这个接口时,会返回一个包含"message"字段的JSON响应。使用FastAPI可以快速、简单地开发API接口,并且利用自动生成的文档功能方便地查看接口文档。通过以上几个简单的步骤,我们可以快速上手FastAPI,并开始构建高性能的API应用。原创 2023-12-14 21:52:25 · 4251 阅读 · 0 评论 -
如何安全运行别人上传的Python代码?
写后端的同学,有时候需要在网站上实现一个功能,让用户上传或者编写自己的Python代码。后端再运行这些代码。涉及到用户自己上传代码,我们第一个想到的问题,就是如何避免用户编写危险命令。如果用户的代码里面涉及到下面两行,在不做任何安全过滤的情况下,就会导致服务器的Home文件夹被清空。有人想的比较简单,直接判断用户的代码里面有没有os.systemexecsubprocess……这些危险关键词不就可以了吗?这种想法乍看起来没有问题,但细想下,就会发现非常天真。如果用户的代码像下面这样写,你又要如何应对?原创 2023-12-14 21:49:08 · 1129 阅读 · 0 评论 -
震撼!这个Python模块竟然能自动修复代码!
FuckIt是一个Python实用工具,用于解决由于Python代码出错而导致的运行异常或崩溃。它试图解释Python代码,除去错误部分,并将修改后的代码(尽可能使其仍然与原代码保持相似)输出到控制台或文件中。通过这个库可以帮助我们检查和修复代码中的各种问题,包括语法错误、未使用的变量和导入以及样式问题。原创 2023-12-12 22:07:52 · 566 阅读 · 0 评论 -
PaddleOCR:超越人眼识别率的AI文字识别神器
PaddleOCR是一个可以识别图片中文字的工具,可以将图片中的文字转换成电脑可以认识的文字。简单来说,它的原理是使用深度学习技术,通过训练模型来识别图片中的文字。具体来说,它会通过一系列处理,比如缩放、灰度化、去噪等操作,来提高文字识别的准确率。然后,它会使用深度学习模型来检测图片中的文字区域,并将其转换成电脑可以识别的边界框。最后,它会使用另一个深度学习模型来识别边界框中的文字,并将其转换成电脑可以识别的文字。这样,就可以实现将图片中的文字转换成电脑可以识别的文字的功能了。原创 2023-12-12 22:03:04 · 6905 阅读 · 0 评论 -
利用贝叶斯超参数优化,提升模型效果更科学(附Python代码)
目标函数接受一组超参数C和gamma作为输入,并返回在鸢尾花数据集上使用RBF核的支持向量分类器的负准确性。其中,C是正则化参数,gamma是RBFpoly和sigmoid核的核系数。核系数的详细信息对我们的流程并不关键,可以在这里找到。然后,我们使用load_iris加载鸢尾花数据集,并将数据分为训练集和测试集。数据准备好后,训练支持向量分类器,并返回在测试集上的负准确性。在这一步,我们定义超参数搜索空间的边界。我们创建一个形状为(2, 2) 的NumPy数组bounds。原创 2023-12-11 22:30:43 · 3101 阅读 · 0 评论 -
太良心了!微软面向初学者,开源机器学习、数据科学、AI、LLM
大家好,推荐几个质量上乘且完全免费的微软开源课程,由粉丝小伙伴梳理,分享给大家。原创 2023-12-10 11:11:21 · 1167 阅读 · 0 评论 -
Evidently:一个神奇的Python库,机器学习必备!
Evidently 是一个开源的 Python 工具,旨在帮助构建对机器学习模型的监控,以确保它们的质量和在生产环境运行的稳定性。它可以用于模型生命周期的多个阶段:作为 notebook 中检查模型的仪表板,作为 pipeline 的一部分,或者作为部署后的监控。Evidently 特别关注模型漂移,同时也提供了模型质量检查、数据质量检查和目标漂变监测等功能。此外,它还提供了多种内置的指标、可视化图形和测试,可以轻松地放入报告、仪表板或测试驱动的 pipeline 中。原创 2023-12-10 11:00:14 · 975 阅读 · 0 评论 -
TimeGPT:时序预测领域终于迎来了第一个大模型
首先,TimeGPT是一个预先训练的模型,这意味着可以生成预测,而不需要对数据进行特定的训练。尽管如此,还是可以根据我们的数据对模型进行微调。其次,该模型支持外生变量来预测我们的目标,也就是说可以处理多变量预测任务。最后,使用保形预测,TimeGPT可以估计预测区间。这反过来又允许模型执行异常检测。如果一个数据点落在99%的置信区间之外,那么模型将其标记为异常。所有这些任务都可以通过零样本推理或一些微调来实现,这是时间序列预测领域范式的根本转变。原创 2023-12-03 22:31:12 · 1486 阅读 · 0 评论 -
带你轻松掌握6种 Python 数据库操作及代码案例
在数据处理和管理领域,Python作为一种高效、易用的编程语言,拥有丰富的数据库操作模块,可以轻松实现对关系型数据库的数据操作。本文将介绍六种常见的Python数据库操作模块,并提供相应的代码案例,帮助读者快速上手。原创 2023-12-03 10:06:56 · 2861 阅读 · 0 评论 -
干货满满!史上最全 Python 数据分析学习路线来了
如果我说:Pandas 是 Python 中最好的数据处理库,应该没有人反驳吧?但是很多人就是学不会,因为官网看起来太费劲了!近期我梳理了Python、数据分析、数据挖掘算法的材料:1、Pandas官方教程链接;2、十分钟搞定Pandas;3、Pandas秘籍;4、学习Pandas;原创 2023-12-02 23:26:16 · 702 阅读 · 0 评论 -
jionlp :一款超级强大的Python 神器!轻松提取地址中的省、市、县
在日常数据处理中,如果你需要从一个完整的地址中提取出省、市、县三级地名,或者乡镇、村、社区两级详细地名,你可以使用一个第三方库来实现快速解析。在使用之前,你需要先安装这个库。为了更快速地安装,我们可以选择使用国内的软件源(比如豆瓣镜像)进行下载和安装所需的第三方库。当然,你也可以选择其他可靠的国内源进行操作。原创 2023-12-02 22:09:23 · 6181 阅读 · 3 评论 -
Chatbot开发三剑客:LLAMA、LangChain和Python
聊天机器人(Chatbot)开发是一项充满挑战的复杂任务,需要综合运用多种技术和工具。在这一领域中,LLAMA、LangChain和Python的联合形成了一个强大的组合,为Chatbot的设计和实现提供了卓越支持。首先,LLAMA是一款强大的自然语言处理工具,具备先进的语义理解和对话管理功能。它有助于Chatbot更好地理解用户意图,并根据上下文进行智能响应。LLAMA的高度可定制性使得开发者可以根据实际需求灵活调整Chatbot的语言处理能力。原创 2023-11-25 10:35:27 · 1637 阅读 · 0 评论 -
Loguru:一个超酷的Python库
Loguru是一个Python日志记录库,以其易用性和灵活性而闻名。与Python内置的logging模块相比,Loguru提供了更简洁的API和更多的功能,让日志记录变得无痛。GitHub地址:https://github.com/Delgan/loguru对于Python开发者而言,Loguru提供了一个简单而强大的日志记录解决方案。它的易用性、灵活性和丰富的功能使得它成为Python社区中备受欢迎的日志记录工具。无论你是初学者还是有经验的开发者,Loguru都值得一试。原创 2023-11-19 21:49:11 · 293 阅读 · 0 评论 -
sjvisualizer,一个超强的Python数据可视化动画库
相信不少小伙伴,对自己做的静态图表平平无奇而烦恼。那么试试动态图表,应该是个不错的选择。不仅有新意,而且还直观+美观。不过市面上不少工具都需要收费使用,如果你的预算不够,那么Python动态数据可视化库,倒是一个不错的选择,免费~原创 2023-11-10 21:59:30 · 239 阅读 · 0 评论 -
4个杀手级Pycharm高效插件
Pycharm是Python最受欢迎的集成开发环境之一。它具有良好的代码助手、漂亮的主题和快捷方式,使编写代码变得简单快捷。话虽如此,开发者仍可以通过使用一些插件来提高在Pycharm中编写Python代码的效率和乐趣。在市场上,Pycharm有很多免费的插件可以安装。下面是每个Python程序员都应该安装的4个Pycharm插件。其中大部分也可以在DataSpell中找到,DataSpell是一个与Pycharm类似的集成开发环境。原创 2023-11-09 22:10:46 · 1129 阅读 · 0 评论 -
快速高效!用Python批量分割PDF文件,让你的工作更轻松...
本文介绍了如何使用Python进行批量分割PDF文件的方法。通过合理的架构设计和代码实现,我们可以快速、高效地完成这一任务。读者可以根据实际需求,进一步优化代码,添加更多功能,实现更多操作。原创 2023-11-09 21:49:28 · 552 阅读 · 0 评论 -
Jupyter 两个炸裂的骚操作!
大家好,Jupyter的常用功能不多说了,关注我的粉丝相信都比较熟悉了,不了解的可以看看历史文章。今天聊两个不太常见但很有用的骚操作,可以为我们节省大量的时间,提高效率。下面我们开始介绍。原创 2023-11-05 21:46:47 · 255 阅读 · 0 评论 -
盘点算法比赛中常见的AutoEDA工具库
在完成竞赛和数据挖掘的过程中,数据分析一直是非常耗时的一个环节,但也是必要的一个环节。能否使用一个工具代替人来完成数据分析的过程呢,现有的AutoEDA工具可以一定程度上完成上述过程。原创 2023-10-25 22:07:19 · 181 阅读 · 0 评论 -
哪个定时任务库更好用? Schedule,APScheduler,还是 Celery?
经济学原理中讲到:人们面临权衡取舍。这句话在技术领域同样适用。在挑选最佳的定时任务库时,我们也面临权衡取舍,取决于我们特定的需求。需要考虑的一些因素包括功能:你需要哪些功能?某些库提供的功能比其他库更多,例如支持不同类型的调度(cron、间隔、日历等)、多个工作线程和错误处理。易用性:这个库使用起来有多容易?某些库的设置和使用比其他库更复杂。社区支持:社区的活跃程度如何?从长远来看,拥有庞大而活跃社区的图书馆更有可能得到维护和支持,遇到问题也更容易通过搜索来解决。原创 2023-10-21 09:27:57 · 515 阅读 · 0 评论 -
用 Python 这样去创建词云不是更美嘛?
什么是词云?在网络上我们经常可以看到一张图片,上面有一大堆大小不一的文字,这便是词云。词云一般是根据输入的大量词语生成的,如果某个词语出现的次数越多,那么相应的大小就会越大。Python 中有一个专门用来生成词云的模块:wordcloud,直接 pip 安装即可,然后我们来看看它的用法。原创 2023-10-21 09:23:12 · 237 阅读 · 0 评论 -
最频繁被问到的SQL面试题
面试感叹失败的原因可能有很多,而做成的道路只有⼀条,那就是不断积累。纯手工的8291字的SQL面试题总结分享给初学者,俗称八股文,期待对新手有所帮助。窗口函数其实就是根据当前数据, 计算其在所在的组中的统计数据。窗口函数和group by得区别就是,groupby的聚合对每一个组只有一个结果,但是窗口函数可以对每一条数据都有一个结果。公众号:Python学习与数据挖掘,在后台回复:SQL面试题 可获取完整面试资料思路:计算每一个类别的按照收入排序的序号,然后取每个类别中的前两个数据。总结答案:按照类别进原创 2023-09-23 23:22:55 · 436 阅读 · 0 评论 -
一款超强的 Python 分析工具!
这个项目对于数据分析者来说,可以作为一个轻量级的使用场景,是极其方便的!关注本号,带来更多超有用小技巧,提升工作学习效率!原创 2023-09-19 22:01:55 · 306 阅读 · 0 评论