算法实战
文章平均质量分 89
算法实战
Python数据开发
这个作者很懒,什么都没留下…
展开
-
算法|东华大学211硕士|滴滴2轮面经,已OC
最近已有不少大厂都在秋招宣讲了,也有一些在 Offer 发放阶段。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新人如何快速入门算法岗、如何准备面试攻略、面试常考点、大模型项目落地经验分享等热门话题进行了深入的讨论。原创 2024-10-03 00:09:40 · 502 阅读 · 0 评论 -
算法|30-50K*15薪|小米3轮面经(推荐算法)
整个面试下来,感觉问的基础题偏多,机器学习的内容偏多,基本没怎么聊深度学习相关的事情。工程方面的问题也有涉及,感觉应该是推荐系统早期的建设阶段,更多的工作内容偏向于工程落地实现。原创 2024-10-02 23:57:27 · 579 阅读 · 0 评论 -
Scikit-Learn 四个神级处理数据的技巧
最近已有不少大厂都在秋招宣讲了,也有一些在 Offer 发放阶段。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新人如何快速入门算法岗、如何准备面试攻略、面试常考点、大模型项目落地经验分享等热门话题进行了深入的讨论。尽管近年来由于 PyTorch 的迅猛发展, scikit-learn 作为建模库已基本失宠,但它仍然是最好的数据准备库之一。如果你准备深入挖掘一下,你将发现一个宝库,里面有大量有用的工具,可用于更高级的数据准备技术,与后续建模完美兼容。原创 2024-10-02 23:37:03 · 1299 阅读 · 0 评论 -
《算法岗面试宝典》重磅发布!
薪资真香、技术难度真大、要求真的很全面,但不是没有方法可循、可借鉴的。业务知识 + 专业知识 + 编程基础能力+刷题(LeetCode/剑指Offer) + 项目 + 实习 + 竞赛 +顶会/顶刊+学校针对岗位要求,我在知识星球和《算法面试宝典》中详细给大家介绍。让加入的朋友了解最前沿的知识点,有问题给予专业指导,少栽跟头。这份《算法面试宝典》,文档字数 30w+,我们也在一直更新,涵盖算法岗的方方面面,相信你读完并思考实践后,你一定能有所收获。原创 2024-10-02 14:30:57 · 197 阅读 · 0 评论 -
如何使用 FastAPI 部署 NLP 模型?
FastAPI 是一个用于构建 Python API 的高性能、现代Web框架。它提供了自动交互文档和比其他框架更简便的编码特性。FastAPI构建于两个核心Python库之上:Starlette(用于Web处理)和Pydantic(用于数据处理和验证)。我们将重用第一部分中的 text_cleaning 函数来清理新的评论。# ...(参考前面的代码块)原创 2024-05-28 21:54:43 · 1408 阅读 · 0 评论 -
实战案例:使用 LSTM 进行多变量时间序列预测(附Python完整代码)
在本文中我们将使用深度学习方法 (LSTM) 执行多元时间序列预测。我们先来了解两个主题——时间序列分析:时间序列表示基于时间顺序的一系列数据。它可以是秒、分钟、小时、天、周、月、年。未来的数据将取决于它以前的值。在现实世界的案例中,我们主要有两种类型的时间序列分析——对于单变量时间序列数据,我们将使用单列进行预测。正如我们所见,只有一列,因此即将到来的未来值将仅取决于它之前的值。但是在多元时间序列数据的情况下,将有不同类型的特征值并且目标数据将依赖于这些特征。原创 2022-12-11 10:09:14 · 45401 阅读 · 43 评论 -
TensorFlow 实战案例: ResNeXt 交通标志图像多分类,附Tensorflow完整代码
各位同学好,今天和大家分享一下如何使用构建神经网络模型,通过ResNeXt 是 ResNet 的改进版,在 bottleneck卷积块 结构上进行了较小的改动,其他都和 ResNet 模块相近,如下图所示,ResNeXt 比 ResNet 的精度更好。原创 2023-01-14 20:10:53 · 955 阅读 · 0 评论 -
【实战案例】手把手教你用 Python 分析产品交叉销售和关联分析
今天的内容是一期Python实战训练,我们来手把手教你用Python分析保险产品交叉销售和哪些因素有关。原创 2022-12-02 23:08:05 · 716 阅读 · 0 评论 -
基于 PyTorch + LSTM 进行时间序列预测(附完整源码)
我们将使用的数据集是Python Seaborn库中内置的。输出我们将使用的数据集是航班数据集。数据集有三列:年份、月份和乘客数。乘客列包含指定月份旅行的总人数。您可以看到数据集中有144行和3列,这意味着该数据集包含乘客12年的旅行记录。任务是基于前132个月预测最近12个月旅行的乘客人数。请记住,我们有144个月的记录,这意味着来自前132个月的数据将用于训练我们的LSTM模型,而模型性能将使用最后12个月的值进行评估。让我们绘制每月旅行乘客数量的频率。原创 2023-03-26 15:05:20 · 13111 阅读 · 9 评论 -
基于TensorFlow 实战案例:气温预测(附 Python 完整代码和数据集)
各位同学好,今天和大家分享一下TensorFlow2.0深度学习中的一个小案例。案例内容:现有348个气温样本数据,每个样本有8项特征值和1项目标值,进行回归预测,构建神经网络模型。原创 2022-10-07 13:43:01 · 9790 阅读 · 2 评论 -
使用 Python 深度学习方法对电影评论进行情绪预测
如何在 Keras 中加载和查看 IMDB 数据集如何开发用于情感分析的大型神经网络模型如何开发用于情感分析的一维卷积神经网络模型你对情绪分析或这篇文章有任何疑问吗?在评论中提出你的问题,我会尽力回答。原创 2023-01-29 13:52:18 · 761 阅读 · 0 评论 -
实战案例:利用 Transformer 网络进行时间序列模型预测(附完整 Python 代码)
这可能是一个有趣的项目,从零开始实施类似的东西,以了解更多关于时间序列预测。在时间序列预测中,目标是根据时间序列的历史价值预测其未来价值。时间序列预测任务的一些例子如下:例如,我们可以将一个城市的能源消耗量数据存储几个月,然后训练一个模型,该模型将能够预测该城市未来的能源消耗。这可以用来估计能源需求,因此能源公司可以使用这个模型来估计在任何特定时间需要生产的能源的最佳价值。原创 2022-12-23 22:34:13 · 8473 阅读 · 5 评论 -
TensorFlow 实战案例:CNN-LSTM 混合神经网络气温预测(附 Python 完整代码)
大家好,今天和各位分享一下如何使用 Tensorflow 构建 CNN卷积神经网络和 LSTM 循环神经网络相结合的混合神经网络模型,完成对多特征的时间序列预测。本文预测模型的主要结构由 CNN 和 LSTM 神经网络构成。气温的特征数据具有空间依赖性。本文选择通过在模型前端使用CNN卷积神经网络提取特征之间的空间关系。同时,气温数据又具有明显的时间依赖性,因此在卷积神经网络后添加 LSTM 长短时记忆模型进行时序处理。数据集及完整代码文末提供,喜欢记得收藏、点赞。本文使用GPU加速计算,没有GPU的朋友把原创 2022-10-08 21:06:21 · 6795 阅读 · 5 评论 -
使用 PyTorch+LSTM 进行单变量时间序列预测(附完整源码)
我们这个模型表现的还算一般!但是我们通过这个示例完整的介绍了时间序列预测的全部过程,我们可以通过尝试架构和参数的调整使模型变得得更好,预测得更准确。本文只处理单变量时间序列,其中只有一个值序列。还有一些方法可以使用多个系列来进行预测。这被称为多元时间序列预测,我将在以后的文章中介绍。原创 2023-02-21 22:05:01 · 4020 阅读 · 2 评论 -
TensorFlow 实战案例:利用 LSTM、GRU 进行股票数据预测(附 Python 完整代码)
大家好,今天和各位分享一下如何使用循环神经网络 LSTM 和 GRU 完成对股票数据的预测。GRU 是在 LSTM 基础上的简化,将 LSTM 内部的三个闸门简化成两个,往往 GRU 的计算效果会优于 LSTM原创 2022-10-08 20:53:33 · 4799 阅读 · 8 评论 -
TensorFlow 实战案例:利用 LSTM 进行电量预测(附 Python 完整代码和数据集)
首先进行模型编译,使用adam优化器设置学习率0.01,使用平均绝对误差作为网络训练时的损失函数,网络迭代20次。,真实值 y_test,绘图展示预测值和真实值的偏离程度。大家好,今天和各位分享一下如何使用 LSTM 完成时间序列预测,本文是针对单个特征的预测,后续对多个特征的预测。比如对某一时间点预测,规定每20个特征值,预测得到一个标签值。由于原始数据最大值和最小值之间相差较大,为了避免数据影响网络训练的稳定性,由于本案例数据量比较少,特征也只有一个,因此不需要使用复杂网络,由于是基于时间序列的预测,原创 2022-10-07 15:33:13 · 5408 阅读 · 5 评论 -
这样去做信用贷款违约预测项目,效果提升明显
项目背景:比赛由Kaggle举办,要求选手依据客户的信用卡信息(application)、信用局信息(bureau)、历史申请信息(previous_application)分期付款信息(installments_payments)等7个主、副数据集来预测客户贷款是否会违约。首先对数据进行预览和可视化探索,理解各个属性,查看数据集中的缺失值和异常值并进行相应地处理;其次对违约用户和非违约用户的属性分布进行可视化分析,探索差异点;原创 2022-11-16 21:49:03 · 503 阅读 · 0 评论