是时候准面试和实习了。
不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。
最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。
喜欢本文记得收藏、关注、点赞。
快手搜推一二面面经
【一面】
因为没有搜推项目,简单问了几句论文就进入八股环节,面试以来最长最细的机器学习八股
- 卷积和最大池化的梯度是怎么传递的
- 回归用的mse,公式怎么写
- 分类用交叉熵,公式怎么写,具体怎么推导
- transformer具体结构有什么,为什么要用多头
- 推荐系统相关模型知道吗
- logistics模型能介绍一下吗
- sigmoid怎么写,如果能保证sigmoid一直在非饱和区,会不会面临梯度消失或者爆炸
- 有什么方法解决梯度消失或爆炸
- 神经网络归一化怎么做
- relu怎么写
- 手撕k个升序链表
【二面】
这次论文聊了很久,简单问了一点八股
- l1和l2正则化的区别,为什么l2不会置零
- 优化器中的自适应学习率怎么用
- 神经网络如果全初始化为0会怎么样,全为0.1呢
- 手撕归并
整体体验还是不错的,两个面试官人都很好,不会的地方一直在引导,但是鼠鼠确实毫无搜推基础,太菜了
美团算法面经
【一面】
面试问题:主要分了两部分,简历里项目,论文,竞赛和手撕。
项目是穿插着八股问的,下面是涉及到八股的一些问题
- 如何缓解大模型的复读机问题和幻觉问题
- 讲一下大模型的采样
- 为什么做了sft还要做ppo
- 讲一下qlora的好处
- 讲一下ppo的四个模型
- sft数据的多样性怎么保证
- dpo和ppo相比的优势在哪里
- 有没有考虑过rag,具体怎么实施的
手撕是基础的单头注意力,写完之后问了怎么改多头,为什么要除以根号dk和单头改多头的参数量会不会变。
反问问了一下业务和对于大模型定量计算的看法
面试体验:体验不错,没答上的地方也只是说下去看看。
【二面】
面试问题:拷打简历的论文,项目和竞赛。非常细节。
穿插的八股主要集中在ppo和lora,关于ppo的四个模型和actor loss,lora具体的精度改变。
手撕层序遍历和反转链表(层序遍历bug没改出来)
面试体验:体验不错,就是我太菜了
许愿团子收留我,不想面了。