快手/美团算法岗面经总结

是时候准面试和实习了。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

喜欢本文记得收藏、关注、点赞

在这里插入图片描述


快手搜推一二面面经

【一面】

因为没有搜推项目,简单问了几句论文就进入八股环节,面试以来最长最细的机器学习八股

  1. 卷积和最大池化的梯度是怎么传递的
  2. 回归用的mse,公式怎么写
  3. 分类用交叉熵,公式怎么写,具体怎么推导
  4. transformer具体结构有什么,为什么要用多头
  5. 推荐系统相关模型知道吗
  6. logistics模型能介绍一下吗
  7. sigmoid怎么写,如果能保证sigmoid一直在非饱和区,会不会面临梯度消失或者爆炸
  8. 有什么方法解决梯度消失或爆炸
  9. 神经网络归一化怎么做
  10. relu怎么写
  11. 手撕k个升序链表

【二面】

这次论文聊了很久,简单问了一点八股

  1. l1和l2正则化的区别,为什么l2不会置零
  2. 优化器中的自适应学习率怎么用
  3. 神经网络如果全初始化为0会怎么样,全为0.1呢
  4. 手撕归并

整体体验还是不错的,两个面试官人都很好,不会的地方一直在引导,但是鼠鼠确实毫无搜推基础,太菜了

美团算法面经

【一面】

面试问题:主要分了两部分,简历里项目,论文,竞赛和手撕。
项目是穿插着八股问的,下面是涉及到八股的一些问题

  1. 如何缓解大模型的复读机问题和幻觉问题
  2. 讲一下大模型的采样
  3. 为什么做了sft还要做ppo
  4. 讲一下qlora的好处
  5. 讲一下ppo的四个模型
  6. sft数据的多样性怎么保证
  7. dpo和ppo相比的优势在哪里
  8. 有没有考虑过rag,具体怎么实施的

手撕是基础的单头注意力,写完之后问了怎么改多头,为什么要除以根号dk和单头改多头的参数量会不会变。

反问问了一下业务和对于大模型定量计算的看法
面试体验:体验不错,没答上的地方也只是说下去看看。

【二面】

面试问题:拷打简历的论文,项目和竞赛。非常细节。
穿插的八股主要集中在ppo和lora,关于ppo的四个模型和actor loss,lora具体的精度改变。
手撕层序遍历和反转链表(层序遍历bug没改出来)
面试体验:体验不错,就是我太菜了
许愿团子收留我,不想面了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值