反向传播算法

反向传播算法

  神经网络正常情况下,信息流都是前向传播的,输入数据经过线性加权组合,激活函数实现非线性变换,在不同层级间反复迭代,得到最后的输出,这就如同人生一路向前不可逆转。
y i = f ( ∑ i w i ⋅ x i ) y_i=f(\sum_i{w_i}\cdot{x_i}) yi=f(iwixi)
image-20220920190938342

  神经网络的训练往往以随机参数开始,初始输出一般都不尽如人意,学习的目的就是赋予它"穿越的力量",使其能够不断的自我更新,最终实现完美的效果。
先按网络关系把误差乘以权重: δ 1 = w 14 ⋅ δ 4 + w 15 ⋅ δ 5 然后汇聚求和 一级级把误差倒查分解 先按网络关系把误差乘以权重:δ_1=w_{14}\cdot{δ_4}+w_{15}\cdot{δ_5}\\ 然后汇聚求和\\ 一级级把误差倒查分解 先按网络关系把误差乘以权重:δ1=w14δ4+w15δ5然后汇聚求和一级级把误差倒查分解
image-20220920192116294
再根据梯度下降公式逐个更新参数: w ( x 1 ) 1 ‘ = w ( x 1 ) 1 + η ⋅ δ d f 1 ( e ) d e x 1 w ( x 2 ) 1 ‘ = w ( x 2 ) 1 + η ⋅ δ d f 1 ( e ) d e x 2 再根据梯度下降公式逐个更新参数:\\ w^{`}_{(x1)1}=w_{(x1)1}+η\cdot{δ\frac{df_1(e)}{de}}x_1\\ w^{`}_{(x2)1}=w_{(x2)1}+η\cdot{δ\frac{df_1(e)}{de}}x_2 再根据梯度下降公式逐个更新参数:w(x1)1=w(x1)1+ηδdedf1(e)x1w(x2)1=w(x2)1+ηδdedf1(e)x2
image-20220920192407407

  无论神经网络还是混沌现象(蝴蝶效应),都是典型的非线性动力学系统(Nonlinear Dynamical System)
  根据美国学者Strogatz教授的分类,用动力学角度看世界,混沌理论在中间,比著名的三体问题非线性较弱,神经网络在这里维度更高,非线性也更强,而我们熟知的免疫系统、生态系统、经济学以及量子场理论都在其中,这类系统的复杂性来自于非线性的不稳定和对初值的敏感,犹如在有限空间内反复缠绕形成的形状,对点电影而言,每条轨道都是对人生的重写,对神经网络来说,成千上万样本的一遍遍训练和反向传播,就如同在混沌的丛林中不断寻找最优的路径,在这个过程中蝴蝶效应要强调的是哪怕参数的一点点变化,经过非线性空间的映射,最终都可能产生巨大的差异,因此,科学合理的损失函数学习率以及不同的梯度下降算法都很重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

要什么自行车儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值