台北房价预测

本文首先对台北房产数据集进行探索,包括查看数据结构、处理缺失值和异常值。接着,分析了数据的相关性,选择了与房价相关的特征进行建模。使用线性回归、岭回归和套索回归进行了预测,并通过可视化展示了模型性能。最后,比较了不同模型的均方误差和平均绝对误差,以及预测值与真实值的对比。
摘要由CSDN通过智能技术生成

1.数据理解

from sklearn import model_selection as ms
from sklearn.preprocessing import StandardScaler
from sklearn import linear_model
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import PolynomialFeatures as Poly
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data=pd.read_excel("台北房产数据集.xlsx")

1.1分析数据集的基本结构,查询并输出数据的前 10 行和 后 10 行

#前十行
data.head(10)

image-20230421120303023

#后十行
data.tail(10)

image-20230421120335196

1.2识别并输出所有变量

data.dtypes

image-20230421120616648

2.数据清洗

2.1输出所有变量折线图

便于观察观察所有特征的数据。

from pylab import mpl
# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# 绘制直方图
data.hist(bins=50, figsize=(20,15))

image-20230421120906645

image-20230421120917121

image-20230421120926004

2.2缺失值处理

查看每一列的缺失值

#查看每一列的缺失值
data.isnull().sum()

image-20230421121031259

由于缺失值较少,删除具有缺失值的行不会对数据有太大改变。

#删除具有空值的行
data=data.dropna()
data.shape
#(412, 8)

2.3异常值处理

在上面的直方图中我们可以看到有部分数值是与之前的数值格格不入的;
比如附近便利店的数量达到70多个、单位房价值异常高;
我们把这些异常值的行取平均数填入;

  • 先找到数量异常的行
  • 再计算该列的平均值
  • 最后将该行个数替换为列的平均
#在上面的直方图中我们可以看到有部分数值是与之前的数值格格不入的
#比如附近便利店的数量达到70多个、单位房价值异常高
#我们把这些异常值的行取平均数填入

#先找到便利店数量异常的行
data.loc[data['X4 附近便利店家数']>50]
print("异常行的数量:",data.loc[data['X4 附近便利店家数']>50].shape[0])

image-20230501085841218

#将该行便利店个数替换为列的平均值

#先计算该列的平均值
shop_avg=(int)(data['X4 附近便利店家数'].mean())
print("附近便利店家数的平均值为:",shop_avg)
data["X4 附近便利店家数"]=data["X4 附近便利店家数"].replace({70:shop_avg})
print("异常行的数量:",data.loc[data['X4 附近便利店家数']>50].shape[0])

image-20230501085856611

#先找到单位面积房价异常的行
data.loc[data['Y 单位面积房价']>100]
# print("异常行的数量:",data.loc[data['Y 单位面积房价']>100].shape[0])

image-20230501085928055

#将该行单位房价替换为列的平均值

#先计算该列的平均值
shop_avg=(int)(data['Y 单位面积房价'].mean())
print("单位面积房价的平均值为:",shop_avg)
data["Y 单位面积房价"]=data["Y 单位面积房价"].replace({117.5:shop_avg})
print("异常行的数量:",data.loc[data['Y 单位面积房价']>100].shape[0])

image-20230501085953544

3.数据分析

3.1寻找相关性

由于有些特征可能对房价起不到太大作用,还有可能与目标标签是负相关的关系,放到训练集里面既是浪费算力也会减少模型的准确性。

我们数据分析的第一步就是寻找相关性,相关系数范围 [-1, 1] ,越接近 1 表示有越强的正相关,越接近 -1 表示有越强的负相关:

#寻找相关性,相关系数范围 [-1, 1] ,越接近 1 表示有越强的正相关,越接近 -1 表示有越强的负相关
corr_matrix = data.corr()
corr_matrix 

image-20230501090041152

#具体看每个属性与单位面积房价的相关性
corr_matrix["Y 单位面积房价"].sort_values(ascending=False)

image-20230421122014272

由上面相关性可知便利店家数经纬度的相关性较高,而交易年月虽是正相关,但趋近于零,而负相关的变量我们就不考虑了。

#定义散点图函数
def scatter_figure(th1,th2):
    data.plot(kind="scatter", x=th1, y=th2)
    plt.xlabel(th1)
    plt.ylabel(th2)
    data.plot(kind="scatter", x=th1, y=th2, alpha=0.3)
    plt.xlabel(th1)
    plt.ylabel(th2)
# 经度和单位房价的散点图与高密度点
scatter_figure('X6 经度','Y 单位面积房价')

image-20230421122313156

# 纬度和单位房价的散点图与高密度点
scatter_figure('X5 纬度','Y 单位面积房价')

image-20230421122342233

# 经度和纬度的散点图,查看在哪个区域的房价高低,与高密度点
scatter_figure('X6 经度','X5 纬度')

image-20230421122406472

3.2划分数据集

我们把数据集按照训练集:测试集7:3进行划分。

而特征值采用附近便利店数经纬度这三列数据。

#划分数据集
y=data[['Y 单位面积房价']]
x=data[['X4 附近便利店家数','X5 纬度','X6 经度']]
x_train, x_test, y_train, y_test = ms.train_test_split(x, y, random_state=1, test_size=0.3)
x_train.head()

image-20230421122801490

4.数据整理

4.1数据标准化

#标准化
std = StandardScaler()
x_train_std = std.fit_transform(x_train)
x_test_std = std.fit_transform(x_test)
print("标准化之前:\n",x_test)
print("标准化之后:\n",x_test_std)

标准化之

image-20230421122922605

标准化之

image-20230421122935350

5.回归预测分析

5.1线性回归&岭回归&套索回归

回归预测这一部分我们采用了三种回归模型来训练与预测。

三种模型得分

#初始化训练器
line = linear_model.LinearRegression()
ridge=linear_model.Ridge()
lasso=linear_model.Lasso()


nums=[1,2,3]
for num in nums:
    #用于生成多项式特征,即将输入数据的特征进行组合,生成新的特征
    poly= Poly(num) 
    x_train_poly= poly.fit_transform(x_train_std)
    x_test_poly= poly.transform(x_test_std)
        
    line.fit(x_train_poly,y_train)
    ridge.fit(x_train_poly,y_train)
    lasso.fit(x_train_poly,y_train)
        
    # print("预测值为:",y_pred)
    # print("模型预测的均方误差:",mean_squared_error(y_test,y_test_pred))
    print("第{}轮训练结果:".format(num))
    print("线性回归模型得分:",line.score(x_test_poly,y_test))
    print("岭回归模型得分:",ridge.score(x_test_poly,y_test))
    print("套索回归模型得分:",lasso.score(x_test_poly,y_test))
    print("------------------------------------------------------")
    
#预测
y_test_line_pred=line.predict(x_test_poly)
y_test_ridge_pred=ridge.predict(x_test_poly)
y_test_lasso_pred=lasso.predict(x_test_poly)

image-20230426140419738

从得分中我们可以看出来线性回归岭回归模型得分几乎相等,而套索回归模型稍逊色些。

部分预测值实际值对比:

x=[]
for a in range(60):
    x.append([a+20])
# print(x)
y_test2=y_test[20:80]
y_line_pred=y_test_line_pred[20:80]
y_ridge_pred=y_test_ridge_pred[20:80]
y_lasso_pred=y_test_lasso_pred[20:80]
#设置图形
plt.figure(figsize=(20,8),dpi=80)
#画图,zoder是控制画图流程的属性,其值越大则表示画图的时间越晚
plt.plot(x,y_test2,color='tomato',linestyle='--',label='准确值',marker='o')
plt.plot(x,y_line_pred,color='orange',label='线性回归预测值')
plt.plot(x,y_ridge_pred,color='deepskyblue',label='岭回归回归预测值')
plt.plot(x,y_lasso_pred,color='seagreen',label='套索回归预测值')

plt.xlabel("个数")#给x轴起名字
plt.ylabel("对比")#给y轴起名字
plt.grid()  # 设置网格模式
plt.title("部分预测值与实际值对比图")
plt.legend()
#设置每个点上的数值
#展示
plt.show()

image-20230426140221004

6.可视化

# 计算均分方差
train_MSE_line = [mean_squared_error(y_test, [np.mean(y_test)] * len(y_test)),mean_squared_error(y_test, y_test_line_pred)]
train_MSE_ridge = [mean_squared_error(y_test, [np.mean(y_test)] * len(y_test)),mean_squared_error(y_test, y_test_ridge_pred)]
train_MSE_lasso = [mean_squared_error(y_test, [np.mean(y_test)] * len(y_test)),mean_squared_error(y_test, y_test_lasso_pred)]
 
#计算平均绝对误差
train_MAE_line = [mean_absolute_error(y_test, [np.mean(y_test)] * len(y_test)),mean_absolute_error(y_test, y_test_line_pred)]
train_MAE_ridge = [mean_absolute_error(y_test, [np.mean(y_test)] * len(y_test)),mean_absolute_error(y_test, y_test_ridge_pred)]
train_MAE_lasso = [mean_absolute_error(y_test, [np.mean(y_test)] * len(y_test)),mean_absolute_error(y_test, y_test_lasso_pred)]

# 绘图函数
def figure(title, *datalist):
    print(datalist)
    plt.figure(facecolor='gray', figsize=[16, 8])
    for v in datalist:
        plt.plot(v[0], '-', label=v[1], linewidth=2)
        plt.plot(v[0], 'o')
    plt.grid()
    plt.title(title, fontsize=20)
    plt.legend(fontsize=16)
    plt.show()

6.1均分方差

# 绘制误差图
#figure(' 均分方差 = %.4f' % (train_MSE_line[-1]), [train_MSE_line, 'MSE'])
figure('line均分方差=%.4f   ridge均分方差=%.4f   lasso均分方差=%.4f' % (train_MSE_line[-1],train_MSE_ridge[-1],train_MSE_lasso[-1]),
       [train_MSE_line, '线性回归MSE'],[train_MSE_ridge, '岭回归MSE'],[train_MSE_lasso, '套索MSE'])

image-20230426140305899

6.2平均绝对误差

figure('line平均绝对误差=%.4f   ridge平均绝对误差=%.4f   lasso平均绝对误差=%.4f' % (train_MAE_line[-1],train_MAE_ridge[-1],train_MAE_lasso[-1]),
       [train_MAE_line, '线性回归MAE'],[train_MAE_ridge, '岭回归MAE'],[train_MAE_lasso, '套索MAE'])

image-20230426162023751

6.3 所有预测值与真实值对比

x=[]
for a in range(124):
    x.append([a])
#设置图形
plt.figure(figsize=(20,8),dpi=80)
#画图,zoder是控制画图流程的属性,其值越大则表示画图的时间越晚
plt.plot(x,y_test,color='tomato',linestyle='--',label='准确值',marker='o')
plt.plot(x,y_test_line_pred,color='orange',label='线性回归预测值')
plt.plot(x,y_test_ridge_pred,color='cornflowerblue',label='岭回归回归预测值')
plt.plot(x,y_test_lasso_pred,color='mediumseagreen',label='套索回归预测值')

plt.xlabel("个数")#给x轴起名字
plt.ylabel("对比")#给y轴起名字
plt.grid()  # 设置网格模式
plt.title("预测值与实际值对比图")
plt.legend()
#设置每个点上的数值
#展示
plt.show()

image-20230426140349202

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

要什么自行车儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值