- 博客(73)
- 收藏
- 关注
原创 《西游记》的孙悟空有多强?《西游记》的宇宙学以及众神能力介绍
西游记明确指出一粒“沙”内部可容纳无限个无穷且没有边界的世界,根据证明得到了西游记的一粒沙包含了不可数无穷数量的宇宙;了性者视万法皆空,不受三界束缚,无因果却能照见一切因果;菩萨已达“非二元”的究竟空性,视一切皆为虚妄,其超越了用数学和物理描述的层次;诸佛则是对菩萨的彻底超越,其以“法”为体,与“法”合一;法身佛超越了包含与不包含的常规逻辑范畴,它是一种终极实相,超越一切定义、描述、思维与想象,它是不可言说、不可思议、无法表述的绝对真理,它是永恒不变,超越一切对立分化不可言说的绝对至高层次。
2026-01-09 20:45:00
1704
原创 机器人学第二部分——深入旋转矩阵:轴、坐标系与坐标变换
本文探讨了机器人学中旋转矩阵的几何原理与应用。首先介绍了如何通过坐标系和旋转矩阵描述刚体朝向,重点分析了绕x、y、z三个坐标轴的基本旋转矩阵推导过程。通过三角投影关系,展示了每个旋转矩阵元素都对应旋转后坐标轴在原始坐标系中的投影分量。文章从两个视角解释旋转矩阵:坐标系变换(P=R·P')和向量主动旋转(P=R·P'),揭示了二者本质的一致性。最后指出旋转矩阵是空间几何关系的简洁表达,为后续讨论多旋转组合、欧拉角等方向表示方法奠定基础。全文通过几何直观方式,使抽象的旋转矩阵变得具体可理解。
2026-01-09 00:30:00
844
原创 机器人学的第一部分——机器人如何理解空间:运动学与旋转矩阵
本文系统介绍了机器人学中运动学与变换的数学基础。首先阐述了刚体位姿由位置和朝向共同构成,并回顾了向量和三角函数等关键工具。重点讲解了如何通过旋转矩阵表示刚体朝向,详细推导了旋转矩阵的构造方法及其正交性特性(RᵀR=I)。文章还分析了坐标系间的变换原理,包括正向和逆向坐标转换。这些数学工具为机器人运动学和计算机图形学提供了理论基础,使机械臂定位、无人机稳定等应用成为可能。最后指出后续将结合旋转与平移来描述完整刚体运动。
2026-01-08 00:30:00
675
原创 简单介绍光束法平差与重投影误差
光束法平差是计算机视觉中的关键优化技术,通过最小化重投影误差来同步优化相机位姿和三维场景结构。该方法广泛应用于运动恢复结构、摄影测量和SLAM系统,能显著提高三维重建精度。其核心原理是利用多视角图像数据,通过非线性优化(如LM算法)迭代减小观测点与重投影点间的误差。虽然存在初始化要求高、对相机运动敏感等局限,但光束法平差仍是确保三维模型准确性的重要工具,在自动驾驶、VR等领域具有重要应用价值。
2026-01-07 00:45:00
924
原创 介绍基于 C++ 的运动恢复结构(SfM)的三维重建
本文介绍了基于C++的运动恢复结构(SfM)技术实现三维重建的完整流程。首先通过SIFT算法提取图像特征点并计算描述子,然后使用FLANN匹配器进行特征匹配,通过本质矩阵和单应矩阵进行三角测量恢复三维点云。重点阐述了束调整优化过程,利用Ceres Solver自动调整相机参数和三维点位置,通过残差块和自动微分代价函数实现精确优化。最终生成的三维模型可通过MeshLab等工具可视化。整个系统从二维图像序列重建出精确的三维场景结构,展现了计算机视觉技术在三维重建领域的强大能力。
2025-12-30 00:45:00
1225
原创 二极管原理图:理论、设计与实践实现
本文系统阐述了二极管的物理原理、类型及应用。首先解析了PN结的形成机制和肖克利方程描述的电流-电压关系。其次详细介绍了整流、齐纳、肖特基、发光、光电等各类二极管的特性及符号表示。随后讲解了半波/全波整流、限幅、钳位等基础电路设计。最后探讨了选型考量因素及未来宽禁带半导体、集成光子学等发展趋势。全文150字以内概括了二极管的核心知识体系,为电子工程师提供了实用参考。
2025-12-26 00:30:00
789
原创 如何在边缘设备构建、优化和部署人工智能模型
摘要:随着物联网设备预计2030年达400亿台,边缘AI成为解决云端AI延迟、安全与成本问题的关键方案。本文提出五步边缘AI部署流程:1)选择适配模型;2)量化优化;3)硬件编译;4)设备部署;5)持续调优。重点指出边缘环境需平衡精度与效率,推荐MobileNet等轻量架构,强调量化与专用工具链(如Axelera的VoyagerSDK)的重要性。工业检测、医疗监测等案例证实边缘AI在实时性、隐私保护方面的优势,为开发者提供从模型选择到部署优化的完整实践指南。(149字)
2025-12-25 00:30:00
1025
原创 三种急需更智能内存的边缘AI架构及其原因
边缘AI时代的新型存储器解决方案 随着AI向边缘设备迁移,MRAM和FeRAM等新型存储器技术正成为实现高效边缘计算的关键。本文分析了三种典型边缘AI架构的需求:机器人系统需要快速启动与传感器融合,模块化系统依赖OTA更新与安全启动,医疗设备则追求超低功耗与数据安全。相比传统存储器,MRAM和FeRAM展现出显著优势:纳秒级写入速度、超高耐久性(达10¹²次)、极低功耗以及出色的环境耐受性。这些特性使其成为满足边缘AI对实时性、可靠性和能效严苛要求的理想选择,为构建下一代智能边缘系统提供了基础性内存技术支持
2025-12-24 00:30:00
1852
原创 解读openAI的文本图像模型-CLIP
OpenAI发布的CLIP模型开创了文本-图像多模态融合的新范式。该模型通过对比学习将图像和文本映射到共享特征空间,使语义相近的内容具有相似的向量表示。CLIP突破了传统图像分类器的固定标签限制,能基于任意文本描述进行零样本分类和语义搜索。尽管在细粒度识别、空间推理等方面存在局限,CLIP已成为众多视觉语言模型的基础技术,广泛应用于图像生成、语义搜索等领域。作为计算机视觉领域的重大突破,CLIP展示了多模态学习的强大潜力,为构建更智能的视觉系统提供了关键基础。
2025-12-23 09:38:22
625
原创 生成式AI vs 预测式AI:揭秘人工智能领域的两大技术
摘要:本文深入解析了生成式AI与预测式AI的核心区别与应用场景。生成式AI(如GAN、VAE)擅长创造新内容,适用于创意设计、数据增强等领域;预测式AI(如回归分析、神经网络)则基于历史数据进行预测,在风险评估、需求预测等方面表现突出。两者在工程领域形成互补:生成式AI开拓创新方案,预测式AI优化决策流程。文章还探讨了混合系统的协同优势,指出AI技术正在重塑产品设计、材料科学等多个行业。随着技术发展,理解这两种AI范式对工程师把握创新机遇至关重要。
2025-12-19 12:31:46
740
原创 万字详解具身智能用的VLA:视觉-语言-动作模型(VLA)概述与Octo、OpenVLA、π0、GR00T N1等模型介绍
生成式AI推动机器人智能革命:视觉-语言-动作模型的突破与应用 生成式人工智能正彻底改变机器人领域,使机器人具备了"感知-推理-行动"的综合能力。视觉-语言-动作模型(VLA)通过结合大语言模型(LLM)的推理能力和视觉语言模型(VLM)的感知能力,实现了机器人控制的重大突破。目前主流VLA架构包括:Google的RT-2端到端模型、伯克利的Octo开源框架、PhysicalIntelligence的π0流匹配模型,以及NVIDIA的GR00T-N1双系统架构。这些模型通过互联网规模数据
2025-12-18 14:46:40
1200
原创 什么是高带宽内存3(HBM3)?关于HBM3的架构、应用场景和性能表现
HBM3(高带宽内存3)是新一代3D堆叠内存技术,通过16个64位通道和6.4Gbps数据速率实现单堆栈819GB/s带宽,相比HBM2E性能翻倍。其创新在于采用TSV垂直互连、2.5D硅中介层封装,支持12层DRAM堆叠(16-64GB容量),功耗仅2.5pJ/bit。主要应用于AI训练(如NVIDIA H100)、HPC(AMD MI300X)和高端GPU,在带宽密度和能效上显著优于DDR5/GDDR6。行业正加速向HBM3E(9.8Gbps)和HBM4(1.6TB/s)演进,结合光互连技术突破性能边界
2025-12-17 09:52:47
949
原创 GDDR6 VS GDDR6X:GPU与AI芯片的高性能显存技术的选择
GDDR6与GDDR6X显存技术对比分析 本文系统对比了GDDR6与GDDR6X显存的关键差异。GDDR6采用双通道16n预取架构和NRZ信号技术,提供14-16Gb/s速率;而GDDR6X通过PAM4编码实现19-24Gb/s速率,带宽提升50%但设计复杂度更高。在功耗方面,GDDR6X每比特能效更优(7.25pJ/bit),但总功耗更高;GDDR6(7.5pJ/bit)更适合能效敏感场景。应用方面,GDDR6X适用于高端游戏GPU,GDDR6则广泛用于AI推理和嵌入式系统。文章还探讨了PCB布局、信号完
2025-12-16 10:39:41
976
原创 什么是无监督学习?理解人工智能中无监督学习的机制、各类算法的类型与应用
理解无监督学习:其机制、各类算法的类型与应用,以及在机器学习中所面临的挑战。
2025-12-15 10:22:32
999
原创 如何释放GPU的极致性能?最大化 GPU 利用率以进行AI模型训练
本文深入探讨了提升深度学习模型训练中GPU利用率的关键策略。文章首先分析了GPU架构特点及其在深度学习中的优势,重点介绍了CUDA编程模型。随后详细讲解了优化数据流水线、批处理策略、混合精度训练等技术,并提供了显存优化和性能监控的实用方法。通过合理运用这些技术,开发者可以在不牺牲模型精度的前提下显著提升训练效率,充分发挥GPU的计算潜力。文章还针对常见问题提供了解决方案,为深度学习实践者提供了全面的GPU优化指南。
2025-12-13 00:30:00
996
原创 晶体管的工作原理与实际应用
本文深入探讨晶体管的工作原理与应用,重点分析双极型晶体管(BJT)和场效应晶体管(FET)的工作机制。BJT通过基极电流控制集电极电流,适用于信号放大;FET则利用栅极电压调节导电能力,具有高输入阻抗和快速开关特性。文章详细介绍了晶体管的开关与放大模式、设计计算方法,并指出全球晶体管市场将持续增长,预计2030年规模达268.2亿美元,主要受移动SoC、电动汽车和5G等领域的推动。此外,还比较了BJT与FET的差异,阐述了宽禁带半导体等新兴技术的发展趋势,为电子工程师和学生提供了实用的设计参考和市场洞察。
2025-12-12 00:30:00
1942
原创 FPGA编程:理论、工作流程与实践
FPGA 编程指配置现场可编程门阵列的逻辑块和布线资源,以实现特定数字电路。与 CPU 编程不同,它不执行顺序程序,而是使用 HDL 描述硬件行为。基本构建模块包括逻辑门、加法器、寄存器和多路复用器 [4]。
2025-12-11 00:30:00
797
原创 万字详解MASt3R和MASt3R-SfM-图像匹配与立体三维重建
摘要:MASt3R是一种创新的三维感知图像匹配方法,将传统二维匹配问题转化为三维空间任务。该方法通过稠密对应关系和三维场景理解,显著提升了匹配精度,尤其在极端视角变化下表现优异。MASt3R-SfM作为其扩展应用,提供端到端的大规模场景重建方案,相比传统SfM流程效率更高。InstantSplat进一步实现仅需2-3张图像的快速3D重建。这些技术突破为计算机视觉领域带来全新范式,在三维重建、位姿估计等任务中展现出强大的泛化能力和应用潜力。
2025-12-10 00:30:00
797
原创 超万字详解视觉SLAM-用Python从零开始构建单目SLAM
本文介绍了视觉SLAM(同步定位与建图)的基本原理与实现方法。SLAM使机器人能够在未知环境中自主导航,通过相机感知环境并同时构建地图和确定自身位置。文章重点讲解了单目视觉SLAM的工作流程,包括特征提取、匹配、位姿估计、三角化等前端算法,以及光束法平差、回环检测等后端优化技术。通过Python和OpenCV实现了一个简易版本,详细拆解了其中涉及的数学原理和代码实现。最后概述了ORB-SLAM这一重要突破及其核心贡献,包括全流程使用ORB特征、实时性能优化等创新点。文章为理解SLAM系统提供了清晰的技术路线
2025-12-09 08:21:50
834
原创 什么是半导体?半导体的工程原理与应用
本文全面解析了半导体的工程原理与应用。首先介绍了半导体的基本概念、能带结构和带隙特性,阐述了本征与非本征半导体的区别。随后详细分析了主流半导体材料(硅、锗及化合物半导体)的特性与适用场景。在器件层面,重点讲解了二极管、晶体管和集成电路的工作原理及功能。最后系统论述了半导体制造的关键工艺,包括光刻、刻蚀、沉积以及封装测试等环节。文章指出,半导体技术作为现代电子工业的基础,其持续创新正推动着计算、通信等领域的快速发展,深刻影响着科技产业格局和日常生活。
2025-12-08 09:52:10
1484
原创 存内计算的详细介绍:架构、应用场景、最新进展以及提升计算效率的实用实施策略
本文详细分析了存内计算技术,重点探讨了其架构特点、应用场景、最新进展及效率提升策略。存内计算通过将数据处理迁移至主内存(RAM),显著提升了速度和可扩展性,特别适用于实时分析、高频交易等场景。文章阐述了其工作原理、核心优势(包括微秒级延迟、5倍吞吐量提升),以及在金融、电商、医疗等领域的应用案例。同时指出了内存容量限制、成本等挑战,并提出了解决方案建议。结论认为存内计算具有变革潜力,能助力企业实现实时分析和运营优化。
2025-12-06 00:30:00
1802
原创 关于HBM(高带宽内存)的3D堆叠架构、先进封装技术以及在现代GPU、AI加速器上应用介绍
摘要:高带宽内存(HBM)通过3D堆叠架构和超宽接口(如HBM3的1024位)解决了"内存墙"问题,为AI和HPC应用提供TB/s级带宽。其采用硅通孔(TSV)垂直堆叠DRAM芯片,配合硅中介层封装技术,显著降低延迟和功耗。HBM已从2013年的HBM1演进至HBM3E(9.8Gb/s),并正向HBM4(2048位接口)发展。尽管面临热管理和封装复杂度等挑战,HBM凭借卓越的能效比,已成为GPU、AI加速器等高性能计算系统的核心组件,并将在存内计算等新兴领域持续创新。
2025-12-04 09:48:51
1191
原创 全新多视角三维重建DUSt3R的原理详解与成果展示
从根本上说,大多数三维重建系统都依赖于通过三角测量(triangulation)来估计二维像素与三维点之间的对应关系。传统的运动恢复结构(Structure-from-Motion, SfM)/ 视觉 SLAM 以及多视角立体匹配(Multi-View Stereo, MVS)方法,会利用从不同相机视角拍摄的一组二维图像,在考虑相机内参的前提下,重建出场景的三维结构。此外,也存在其他方法,例如单目深度估计器,它们可以借助几何先验知识对三维场景进行近似重建。
2025-12-02 15:44:18
948
原创 ADAS中基于深度学习的立体视觉深度感知技术:以Stereo Transformer (STTR)模型的微调与推理为例
本研究文章探讨了针对高级驾驶辅助系统(ADAS)的Stereo Transformer(STTR)模型的微调与推理流程。探索高级驾驶辅助系统(ADAS)的动态世界以及立体视觉这一创新领域。本文将深入探讨车载ADAS立体视觉如何改变游戏规则,为深度感知提供一种优于传统激光雷达(LiDAR)方法的智能替代方案。这篇全面的研究文章包含一套详细的流程,逐步指导如何搭建并微调一个Stereo Transformer(STTR)模型,使其能够像人类双眼一样,从两个摄像头视频流中预测视差图。
2025-12-01 10:55:11
876
原创 3D高斯泼溅(3D Gaussian Splatting)介绍--论文解析及使用以及在自定义数据集上的训练
3D高斯泼溅(3DGS)是计算机图形学领域的突破性技术,它通过数百万个3D高斯椭球表示场景,无需神经网络即可实现高保真3D重建和实时渲染。该技术将3D高斯投影为2D泼溅图像,采用自适应密度控制优化高斯分布,结合基于瓦片的光栅化实现高效渲染,并使用球谐函数实现视角相关的外观效果。相比传统摄影测量和NeRF方法,3DGS在渲染速度、场景规模和重建质量上均有显著提升,虽然存在文件体积大等局限性,但在游戏、VR/AR等领域展现出巨大潜力。
2025-12-01 08:31:02
1859
原创 人工智能(AI)基础:怎么构建企业级机器学习系统?
本文系统阐述了构建企业级AI基础设施的关键要素,涵盖三大核心架构组件:计算资源管理强调GPU/TPU的硬件加速优势及内存优化配置;分布式存储系统解析数据局部性优化技术与性能评估指标;网络基础设施则聚焦低延迟架构设计与带宽优化策略。在实施层面,详细介绍了容器化部署方案、Kubernetes资源管理及流水线编排工具的应用。性能优化部分提出资源利用率监控方法、智能调度算法和动态扩缩容机制。最后,从运营角度阐述了监控体系构建、安全架构设计等卓越运营实践,为AI系统的高效稳定运行提供全方位解决方案。文章为基础设施工程
2025-11-28 10:34:59
618
原创 推理型大语言模型(LLMs)的介绍:以DeepSeek R1 背后的技术方法为例
本文介绍了构建推理模型的四种主要方法,即我们如何为大语言模型(LLMs)赋予推理能力。希望这些内容能为你提供有价值的见解,帮助你在这一领域快速发展的文献和炒作中理清方向。2024年,大语言模型领域呈现出日益明显的专业化趋势。除了预训练和微调之外,我们见证了各种专用应用的兴起,从检索增强生成(RAG)到代码助手等。我预计这一趋势将在2025年进一步加速,领域和应用场景特定的优化(即“专业化”)将受到更多重视。关注大模型的架构对比可关注这篇文章关注RAG和微调可以看这篇文章。
2025-11-27 10:27:05
1054
原创 现场可编程门阵列(FPGA)芯片设计的基础知识、设计流程、各类应用场景
现场可编程门阵列(FPGA)是一种半导体器件,可在制造完成后进行编程和重复编程,以实现各种数字逻辑功能。FPGA 通过提供可编程的硬件模块和互连资源,能够灵活配置以执行广泛的任务,从而为实现数字电路提供了一种独特的方法。在本篇全面指南中,我们探讨了 FPGA 设计的基础知识、设计流程、多种应用场景,以及创建高效、高质量设计的最佳实践。通过深入理解 FPGA 的工作原理并充分发挥其独特能力,设计人员能够为众多行业和应用场景打造创新解决方案。
2025-11-25 09:17:17
696
原创 检索增强生成(RAG)与大语言模型微调(Fine-tuning)的差异、优势及使用场景详解
微调大语言模型是利用特定任务或领域的定制数据集,对预训练模型进行调整;而检索增强生成(RAG)则将检索系统与生成模型相结合,动态地将外部的、最新的知识融入生成结果中。
2025-11-23 23:15:30
873
原创 人工智能(AI)的工程原理与应用
在本文中,我们探讨了人工智能的工程原理与应用,涵盖了AI系统所涉及的基本概念、算法、技术、硬件组件和软件工具。通过深入理解AI的技术内涵,我们可以更好地认识其对各行业的变革性影响及其重塑日常生活的潜力。随着AI技术持续进步,它将在自然语言处理、计算机视觉、机器人和边缘计算等众多应用场景中扮演越来越重要的角色。掌握AI的工程层面知识,将有助于你开发创新的AI解决方案,应对复杂挑战,推动未来发展。总而言之,人工智能(AI)已在包括医疗健康在内的多个行业取得显著进展。
2025-11-22 23:57:56
492
2
原创 NPU VS 谷歌TPU:深入理解AI芯片的关键差异
TPU 是由谷歌开发的硬件 AI 加速器,属于专用集成电路(ASIC),旨在加速基于张量的计算——这类计算是深度学习的基础。TPU 的架构针对矩阵乘法和平行计算等数学运算进行了优化,使其非常适合用于训练大规模神经网络以及执行批量处理任务。下图是一个展示 TPU 架构的框图:TPU 架构设计旨在通过集成专门的组件来优化计算、存储和通信,从而提升 AI 工作负载的效率。核心部分是矩阵乘法单元,它执行对 AI 任务至关重要的快速大规模矩阵操作。
2025-11-21 08:43:16
307
原创 激光雷达SLAM:同步定位与建图(slam)详细介绍
Lidar SLAM(即“激光雷达同步定位与建图”,全称为Light Detection and Ranging Simultaneous Localization and Mapping)是一种使机器人或自主系统能够在未知环境中构建地图的同时,实时确定自身在该地图中位置的技术。该技术依赖于激光雷达(Lidar)传感器——这些传感器发射激光脉冲,并测量脉冲碰到物体后反射回来所需的时间。
2025-11-20 08:53:33
602
原创 自动驾驶汽车技术的工程原理与应用
自动驾驶技术有望通过提升交通的安全性、舒适性和可靠性,彻底变革人类的出行方式。从载客出行到货物运输,配备人工智能和传感器的自动驾驶技术展现出巨大的潜力。
2025-11-19 08:51:36
971
原创 ASIC芯片设计入门:从规格到芯片的介绍
ASIC 设计并非一个线性过程,而是一系列高度相互依赖的阶段所组成的流程,涵盖规格定义、编码、仿真、优化、物理布局,最终到制造交接。每个阶段都会为下一阶段提供输入,并通过反馈回路使设计人员能够在问题变得代价高昂之前尽早发现并修正。从宏观层面来看,ASIC 设计流程包括以下步骤:通过详细规格文档明确设计意图使用硬件描述语言(如 Verilog 或 VHDL,即超高速集成电路硬件描述语言)描述电路功能验证逻辑行为是否正确利用综合工具将寄存器传输级(RTL)代码转换为逻辑门级网表。
2025-11-17 17:19:33
823
原创 什么是ASIC芯片:全面了解专用集成电路
什么是ASIC?专用集成电路(ASIC)是一种为专门应用而设计的集成电路,与微处理器和内存芯片等适用于多种应用并大规模生产的通用集成电路截然不同。从汽车、飞机到智能手机和家用电器,几乎所有电子设备中都能看到ASIC的身影。ASIC的核心在于通过定制化设计实现特定功能的最大化效率。这种效率可以体现在功耗、性能、成本或三者的结合上。通过针对特定功能设计ASIC,可以优化其结构,从而在该功能上实现最优表现。与使用通用集成电路相比,这种精准设计往往能带来显著的效率提升。
2025-11-17 09:38:27
884
原创 谷歌TPU VS 英伟达GPU:全面技术对比
同时Edge TPU正朝微型化发展,为IoT、智能手机和自动驾驶系统提供端侧AI能力,推动TPU在超大规模数据中心外的低延迟场景普及。与GPU不同,TPU与TensorFlow、JAX及谷歌云生态深度集成,需要通过XLA编译器进行代码编译以实现优化执行。ByteBridge报告显示,在大规模语言模型训练中TPU成本效益比GPU高4-10倍,较英伟达A100 GPU单美元性能提升1.2-1.7倍。在现代计算领域,TPU与GPU的对比已成为高性能处理讨论的核心议题,尤其在人工智能和机器学习工作负载方面。
2025-11-14 10:14:39
2531
原创 英伟达GPU计算的双重引擎:张量核心与CUDA核心
CUDA核心和张量核心是英伟达GPU中的专用单元;前者用于处理广泛的通用GPU任务,而后者则专门通过高效矩阵运算来加速人工智能和深度学习。引言在飞速发展的现代工程领域,GPU计算正彻底改变多个领域的计算能力。这场变革的核心在于英伟达GPU的两个关键组件:张量核心与CUDA核心。这些专用处理单元与传统CPU核心存在根本差异,已成为工程师应对人工智能、机器学习、科学模拟和高性能计算中复杂问题时不可或缺的工具。
2025-11-13 11:37:21
1031
slowfast数据集标注
2023-09-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅