FinDKG:基于大模型和动态知识图谱预测全球金融市场趋势

FinDKG: Dynamic Knowledge Graphs with Large Language Models for Detecting Global Trends in Financial Markets

动态知识图(DKG)用于表达对象间的时间连接,适合从复杂非结构化数据中提取信息。在金融应用中,DKG可用于基于金融新闻检测投资趋势。本文提出了KGTransformer、FinDKG等三项关于动态知识图谱(DKGs)和大型语言模型(LLMs)在金融应用中的贡献。

在基准数据集和FinDKG上进行的链接预测任务中,KGTransformer表现优越。KGTransformer在主题投资方面的表现优于现有的主题ETF,提升超过10%。

论文地址:https://arxiv.org/pdf/2407.10909

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

摘要

动态知识图(DKG)用于表达对象间的时间连接,适合从复杂非结构化数据中提取信息。在金融应用中,DKG可用于基于金融新闻检测投资趋势。本文提出了一个名为集成上下文知识图生成器(ICKG)的开源微调大语言模型,用于生成金融新闻文章的动态知识图FinDKG。设计了基于注意力机制的图神经网络架构KGTransformer来分析FinDKG。在基准数据集和FinDKG上进行的链接预测任务中,KGTransformer表现优越。KGTransformer在主题投资方面的表现优于现有的主题ETF。

一、简介

知识图谱(KG)由实体、关系和事实组成,基本构成是三元组(s, r, o)。动态知识图谱(DKG)在KG基础上引入时间戳,事件以四元组(s_i, r_i, o_i, t_i)表示,支持时间演变。动态知识图谱学习涉及使用图神经网络(GNN)建模KG的结构和时间动态。提出KGTransformer,结合元实体信息的注意力机制GNN,提升链接预测性能。开发集成上下文知识图谱生成器(ICKG),利用LLM从文本中提取实体和关系,生成事件四元组。使用ICKG创建开放源代码的金融知识图谱数据集FinDKG,支持主题投资。

二、相关工作

图表示学习。 图神经网络(GNNs)用于提取图的低维表示,提升节点分类、边预测和图分类等任务的性能,尤其在知识图谱(KGs)中用于信息检索、问答和推荐。

金融知识图谱。 金融系统的复杂动态关系可表示为动态知识图谱(DKGs),应用于欺诈识别、股票预测等,但现有静态GNN模型在动态金融网络中面临挑战。

金融中的大语言模型(LLMs)。 LLMs在金融任务中表现出色,如情感分析和股票市场预测,但存在可解释性和计算成本问题。开源模型如Meta的LLaMA和Mistral AI的LLM提供了更高效的替代方案。

三、集成上下文知识图谱生成器(ICKG)

目标。 提出一个自动化、可扩展的管道,从非结构化数据(如文本)中提取时间知识图谱。使用大语言模型(LLM)进行知识图谱构建,需通过监督微调进行定制。开发了集成上下文知识图谱生成器(ICKG),基于GPT-4 API,优化知识图谱构建任务。

微调流程。 从5000篇开源金融新闻文章构建微调数据集,逐一输入GPT-4,提取三元组并分类实体。应用数据质量过滤,仅保留严格符合指令且每篇文章返回超过5个四元组的输出。使用过滤后的四元组微调开源Mistral 7B模型,耗时约10小时,使用8个40GB的A100 GPU。

流程图示例展示了输入新闻文章、预定义实体类别和关系的过程,输出为表示知识图谱的五元组。

FinDKG数据集

本文贡献了一个开源的金融动态知识图谱数据集FinDKG,基于ICKG LLM构建。数据集包含约40万篇来自《华尔街日报》的金融新闻文章,时间跨度为1999至2023年,排除了与经济金融无关的主题。ICKG提取了包含实体、实体类别和关系类型的五元组,关系类型限制为15种与金融新闻相关的类型。实体经过Sentence-BERT进行消歧义处理。2023年1月的FinDKG快照显示了美中地缘政治紧张、高通胀压力和COVID-19疫情的影响。数据集用于测试提出的动态知识图谱学习方法。

四、基于KGTransformers的图学习

动态知识图谱学习旨在捕捉观察数据的结构和时间特征,重点在于未来事实的预测。主要任务为链接预测:给定源实体、关系和未来时间,预测最可能的目标实体。目标是为每个三元组估计排名函数,表达四元组发生的可能性。本文通过新颖的KGTransformer学习这些函数。

知识图谱Transformer

KGTransformer是一种基于注意力机制的图神经网络(GNN),用于构建实体的低维表示(图嵌入)。该模型在标准GNN架构基础上,结合了元实体,通过扩展的图注意力机制增强不同实体类别间的关联。KGTransformer层生成的嵌入表示为𝑌(ℓ) ∈ R𝑁 × 𝐷ℓ,经过多层处理,最终输出为𝑌(𝐿) ∈ R𝑁 × 𝐷。在每层,潜在特征通过聚合操作生成,采用多头机制进行信息整合。更新函数结合消息向量和注意力分数,通过聚合方程进行计算,确保更新权重归一化。注意力分数通过softmax变换计算,确保权重和为1。

每个注意力分数 𝛼ℎ(𝑠,𝑟,𝑜) 通过元实体整合获得,假设存在函数 𝜏:E→CE,将实体映射到实体类型。

**例子。**OpenAI(公司)与 ChatGPT(产品)之间的关系可表示为 𝜏(OpenAI)=公司,𝜏(ChatGPT)=产品。元实体通过张量𝜇ℎ∈R|CE|×|R|×|CE|融入架构,采用与异构图相同的方法。

KGTransformer 的注意力分数公式为:

键和查询向量由前一层的潜在特征派生,使用可训练矩阵 Pℎ 和 Rℎ。消息向量通过对前一层嵌入 Y(ℓ−1) 应用线性投影获得,公式为:

DKGs的时间演化更新

本节讨论如何在EvoKG框架下结合时间变化的知识图谱(DKG)表示,包括时间嵌入和结构嵌入。定义在离散时间点观察到的DKG G_t =(E, R, F_t),并引入事实集 F_t 的变化。使用KGTransformer独立处理每个图 G_t,生成时间嵌入 V_t 通过RNN建模。对于关系的时间嵌入 V_t^{\sim} 也通过RNN建模,基于出现的关系进行平均。结构嵌入 U_t 通过KGTransformer和RNN生成,反映给定图的条件概率。结构嵌入同样通过对关系进行平均得到 U_t^{\sim} ,并用RNN建模。

动态知识图谱学习

本文讨论了一种基于概率框架的动态知识图(DKG)学习方法,结合KGTransformer的时间变化嵌入。目标是估计最佳模型参数以描述观察到的图G𝑇。概率分解为两个部分:𝑝(𝑠,𝑟,𝑜|G𝑡−1)表示图结构演变,𝑝(𝑡|𝑠,𝑟,𝑜,G𝑡−1)控制时间动态。使用时间变化的结构嵌入𝑢𝑖,𝑡和𝑢˜𝑟,𝑡来近似𝑝(𝑠,𝑟,𝑜|G𝑡)。全局嵌入𝑔𝑡聚合所有实体的嵌入,用于计算条件概率。概率分解为实体和关系层面,使用多层感知机(MLP)进行参数化。时间动态建模通过混合的𝑀个对数正态分布来实现。

模型参数通过接收来自KGTransformer的时间嵌入的多层感知机(MLP)进行学习。通过最小化复合损失函数来推断模型参数,损失函数考虑了关系对称性的调整。

五、实验和应用

测试KGTransformer在链接预测任务上的表现,使用流行基准和新创建的FinDKG数据集。评估由ICKG LLM生成的FinDKG在新闻文章中检测金融趋势的能力,分析图中心性指标。探索FinDKG在主题投资中的应用。

真实世界DKGs的链路预测

实验评估KGTransformer模型在链接预测上的效果,使用MRR和Hits@n(Hits@3和Hits@10)作为性能指标。MRR计算公式为:MRR = Σ (1/rank_q) / |Q|,其中rank_q为真实链接的排名。Hits@n衡量真实链接在前n个预测中的比例,使用验证集进行早停以避免过拟合。

基线模型包括静态图模型R-GCN和时间图模型RE-Net、EvoKG,以及不包含元关系的KGTransformer版本。所有模型在相同计算环境下训练和评估,使用三种随机种子,结果为平均值,变异性小。

评估数据集包括ICEWS、YAGO、WIKI和新引入的FinDKG,FinDKG包含元实体,KGTransformer在此数据集上的优势更明显。

结果显示,静态方法R-GCN在时间设置中表现不佳,强调了时间特征的重要性。KGTransformer在YAGO和WIKI数据集上优于竞争对手,但在ICEWS14数据集上未见提升。在FinDKG上,KGTransformer的优势更明显,整合实体类型显著提升性能,MRR和Hits@3,10指标提高约10%。当不包含实体类别时(“KGTransformer w/o node types”),结果与时间基线接近,显示引入该信息的好处。

金融新闻中的趋势识别

FinDKG用于动态追踪全球金融网络,评估ICKG LLM在金融新闻信息提取中的表现。每周日组建1个月快照知识图,存储前一个月的事件四元组。使用四种中心性指标(度中心性、介数中心性、特征向量中心性、PageRank)量化实体重要性,并进行一年期𝑧-score标准化。以全球COVID-19疫情为案例,分析其中心性指标与头条覆盖度的比较。中心性指标有效捕捉疫情时间线中的重要时刻。

基于FinDKG的主题投资

主题投资策略关注未来影响行业和经济的特定趋势,本文利用FinDKG和KGTransformer进行AI主题的公司曝光度评估。在每个季度末,使用KGTransformer模型进行在线学习,预测未来受AI影响的股票,并构建以AI为主题的投资组合FinDKG-AI。该组合基于预测的影响概率进行月度再平衡,持仓权重归一化,总和为100%。与EvoKG模型相比,FinDKG-AI组合在回测中表现最佳,年化收益和夏普比率最高,超越了现有AI ETF和EvoKG策略。FinDKG-AI组合的表现提升与OpenAI ChatGPT发布的时间点相吻合。

六、总结

本文提出了三项关于动态知识图谱(DKGs)和大型语言模型(LLMs)在金融应用中的贡献。研究了微调的开源LLMs在生成知识图谱中的表现,提出了集成上下文知识图谱生成器(ICKG)LLM。使用ICKG LLM从金融新闻文章中创建了开源数据集FinDKG。

提出了KGTransformer架构,结合了HGT和EvoKG,利用元实体信息提升学习过程。KGTransformer在两个基准数据集上提升了链接预测性能,FinDKG上提升超过10%。ICKG LLM的通用性超越金融领域,相关应用已在文献中出现。相关代码和FinDKG可视化在线门户可在GitHub和指定网址找到。


七、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值