五种挑战
在AI大模型领域,多轮对话是一个难点,主要包括五种挑战。
挑战一,上下文理解: 随着对话轮次的增加,模型需要处理的上下文信息越来越多,这可能导致信息遗忘或混淆。此外,模型的上下文窗口大小有限,可能无法容纳整个对话历史。
挑战二,对话状态跟踪: 在多轮对话中,用户的意图和话题可能会随着对话的进行而发生变化。模型需要跟踪对话的状态,包括用户的意图、当前的话题、已提供的信息等
挑战三,推理与规划: 在多轮对话中,模型可能需要结合先前的对话内容、常识知识和外部信息进行推理。此外,模型还需要规划对话的流程,以确保对话能够顺利进行。
挑战四,对话生成一致性: 在多轮对话中,模型可能会面临多种情况和语境。为了保持对话的一致性,模型需要仔细选择合适的回应,确保对话生成在内容、风格和语气上的一致性。
挑战五,对抗性问题: 用户可能会提出一些具有挑战性或误导性的问题,试图测试模型的能力或寻找其弱点。模型需要具备一定的鲁棒性和应对策略,以应对这些对抗性问题。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】
在这篇文章中,将介绍这五种挑战的应对方式。
一、增加上下文理解
提升大模型的上下文理解能力,是实现多轮对话的基础,大模型需要召回并理解此前的对话信息,才能结合用户当前的输入,给出最适合的应答。提升大模型的上下文理解能力主要有以下几种方式:
1. 获取全量历史对话
第一种方式是获取全量历史对话信息,也是最直接的方式,比如在客服聊天机器人场景中,如果用户在对话中先是询问了账单问题,接着又谈到了网络连接问题,LangChain中的ConversationBufferMemory类可以用来记住整个与用户的对话历史,可以帮助 AI 在回答网络问题时还记得账单问题的相关细节,从而提供更连贯的服务。
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory()
memory.save_context({"input": "你好,请查询一下昨天的账单"}, {"output": "已为您查到账单,账单编号为12345"})
variables = memory.load_memory_variables({})
2. 滑动窗口获取最近部分对话内容
第二种方式是只获取最近相关的对话内容,比如在一个电商平台上,如果用户询问关于特定产品的问题,然后又问到了配送方式,LangChain中的ConversationBufferWindowMemory类可以帮助 AI 只专注于最近的一两个问题,而不是整个对话历史,以提供更快速和专注的答复。
from langchain.memory import ConversationBufferWindowMemory
# 只保留最后5次互动的记忆
memory = ConversationBufferWindowMemory(k=5)
3. 获取历史对话中实体信息
第三种方式是抽取出历史对话中的实体信息,比如在法律咨询的场景中,客户可能会提到特定的案件名称、相关法律条款或个人信息。LangChain中的ConversationEntityMemory可以帮助 AI 记住这些关键实体和实体关系细节,从而在整个对话过程中提供更准确、更个性化的法律建议。
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
memory = ConversationEntityMemory(llm=llm)
_input = {"input": "公众号《风叔云》的作者是风叔"}
memory.load_memory_variables(_input)
对于一些准确度要求非常高的场景,也可以使用知识图谱抽取历史实体信息。比如在医疗咨询中,一个病人可能会描述多个症状和过去的医疗历史,ConversationKGMemory 可以构建一个包含病人症状、疾病历史和可能的健康关联的知识图谱,从而帮助 AI 提供更全面和深入的医疗建议。
from langchain.memory import ConversationKGMemory
from langchain.llms import OpenAI
llm = OpenAI(temperature=0)
memory = ConversationKGMemory(llm=llm)
4. 对历史对话进行阶段性总结摘要
第四种方法是对历史对话进行阶段性总结,比如在教育辅导对话中,学生可能会提出不同的数学问题或理解难题,ConversationSummaryMemory 可以帮助 AI 总结之前的辅导内容和学生的疑问点,以便在随后的辅导中提供更针对性的解释和练习
二、跟踪对话状态
提升对话状态跟踪主要是为了使AI Agent能够准确地理解和把握对话的进展,从而做出合适的回应,比如引导用户提问、引导用户给出更多信息等等。
对话状态跟踪的核心在于识别和更新对话的关键信息,这些信息通常包括用户的意图、当前的话题、已提供的信息、槽位值(slot values)等。对话状态跟踪可以通过以下几种方式实现:
基于规则的对话状态跟踪: 使用预定义的规则来识别和更新对话状态,比较依赖于专家知识,适用于领域特定的对话系统。
基于统计的对话状态跟踪: 使用统计模型(如隐马尔可夫模型、条件随机场等)来学习对话状态的转移概率,并根据这些概率来更新对话状态。
基于深度学习的对话状态跟踪: 使用深度学习模型(如循环神经网络、Transformer等)来自动学习对话状态的表示和更新策略。这种方法可以处理更复杂的对话场景,但需要大量的训练数据。
我们以基于深度学习的对话状态跟踪为例,包括以下关键步骤:
-
数据准备:收集和标注对话数据集,包括对话历史、用户意图、槽位值等信息。对数据进行预处理,如分词、去除停用词、标准化等。
-
特征提取:将对话历史转换为模型可处理的特征向量,可以使用词嵌入(word embeddings)或其他文本表示方法来提取特征。
-
模型训练:选择一个合适的深度学习模型,如循环神经网络(RNN)或Transformer;定义损失函数,如交叉熵损失(cross-entropy loss),用于衡量模型预测的对话状态与真实状态之间的差异;使用训练数据集对模型进行训练,通过反向传播算法优化模型参数。
-
对话状态跟踪:在实际对话过程中,将用户的输入和先前的对话历史输入到训练好的模型中。模型根据输入的特征向量预测当前的对话状态,包括用户意图、槽位值等。
-
对话管理:根据预测的对话状态,使用对话管理模块来决定下一步的行动,如提问、提供信息或执行动作等。将AI Agent的回应和新的对话历史输入到模型中,继续进行下一轮的对话状态跟踪。
-
模型评估与优化:使用验证数据集评估模型的性能,如准确率、召回率、F1分数等。根据评估结果对模型进行优化,如调整模型结构、超参数或训练策略等。
通过以上流程,可以有效地提升对话状态跟踪的准确性和效率,使AI Agent能够更好地理解和应对多轮对话中的各种场景。
三、推理与规划
关于大模型的推理与规划,风叔此前也有过专题介绍
从最经典的ReAct模式出发,有两条发展路线,一条重规划,一条重反思。
在重规划的模式下,ReAct模式加上规划器就成为REWOO,再加上重规划器就成为Plan & Execute,再叠加计划并行执行能力就成为LLM Compiler。
在重反思模式下,ReAct模式加上左右互搏框架就成为Basic Reflecion,边推理边执行则演变为Self-Discover,加入强化学习则演变为Reflexion,最后的LATS是推理和规划的集大成者,LATS = Tree search + ReAct + Plan&Execute + Reflexion。
四、实现对话一致性
一致性问题主要涉及到对话内容、风格和语气的一致性,保证对话生成的一致性是多轮对话系统中的重要挑战。
对话生成的一致性同样可以通过三种方式来实现:
基于规则的生成: 使用预定义的规则和模板来生成对话,确保生成的对话符合特定的风格和语气。这种方法适用于领域特定的对话系统,但灵活性较差。
基于统计的生成: 使用统计语言模型(如n-gram模型、隐马尔可夫模型等)来生成对话。这些模型可以根据先前的对话内容预测下一个词的概率分布,从而生成连贯的对话。
基于深度学习的生成: 使用深度学习算法,学习对话的复杂模式和上下文依赖关系,从而生成更自然和一致的对话。
我们仍然以深度学习为例,和对话状态追踪的流程相似:
-
数据准备:收集和标注对话数据集,确保数据集中包含一致的对话风格和语气。对数据进行预处理等。
-
特征提取:将对话历史转换为模型可处理的特征向量,可以使用词嵌入(word embeddings)或其他文本表示方法来提取特征。
-
模型训练:和对话状态追踪相似,但需要定义不同的损失函数,比如风格一致性损失、话题一致性损失。可以使用对抗性训练方法来提高模型的一致性。通过引入一个风格判别器,使生成器生成的对话难以被风格判别器识别,从而提高生成对话的风格一致性。
-
对话生成:在实际对话过程中,将用户的输入和先前的对话历史输入到训练好的模型中,模型根据输入的特征向量生成当前的对话回应。
通过以上流程,可以有效地保证对话生成的一致性,使AI Agent能够生成自然、连贯且符合特定风格和语气的对话。
五、对抗性问题防御
对抗性问题是指一些涉及政治、隐私、灰色等不友好的问题,比如“如何下载盗版游戏”、“如何盗取他人账号密码”等等,防御对抗性问题也是大模型必须要克服的难点。
对抗性问题的主要防御策略包括:
对抗性训练(Adversarial Training):即在模型训练的过程中就引入对抗性样本,使模型能够学习识别和处理这些恶意输入。
多模型集成(Ensemble Methods):采用多个模型的集成方法,提高对抗性攻击的鲁棒性。
隐私保护技术(Privacy-preserving Techniques):使用差分隐私等技术,减少模型对特定输入的敏感性。
在这篇文章中,介绍了大模型多轮对话的五种挑战和应对措施,当大家需要设计对话机器人、智能客服、智能导购、知识助手等产品时,可以参考文中提出的方法。
六、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】