Vivo推出中国首家安卓手机Agent竞技平台A3

A3: Android Agent Arena for Mobile GUI Agents

在这里插入图片描述

近年来,由于大语言模型(LLMs)取得的重大进展,AI Agent的应用愈发广泛。移动GUI Agent是AI Agent的一个分支,专门设计用于在移动设备上自主执行任务。虽然已有多项研究介绍了各种Agent、数据集和基准测试,以推进移动GUI Agent的研究,但很多现有数据集主要关注静态画面评估,无法提供一个全面的平台来衡量Agent在真实、动态环境中的表现。

为了弥补这一不足,我们推出了“安卓Agent竞技场”(Android Agent Arena, A3),这是一个新的评估平台。与现有系统相比,A3具有以下特点:

实用性强的任务:包括实时在线信息检索和操作指令等贴近实际需求的任务;
更广阔灵活的动作空间:支持更多种类的操作,能与基于不同数据集训练的Agent兼容;
自动化的业务级评估流程:利用大型语言模型进行评估,减少对人力和编程技能的依赖。

A3包含了21款常用的第三方应用和201个反映典型用户场景的任务,为评估移动GUI Agent在真实使用场景中的表现提供了坚实的依据,并引入了一套新的自动化评估机制。项目详情请访问:https://yuxiangchai.github.io/Android-Agent-Arena/。

论文: https://arxiv.org/pdf/2501.01149

2. LTX-Video: Realtime Video Latent Diffusion

在这里插入图片描述

我们推出了LTX-Video,一种基于Transformer架构的潜在扩散模型,它通过无缝融合Video-VAE和去噪Transformer的功能,采用了整体性的视频生成方法。不同于传统的分离处理方式,LTX-Video旨在优化两者间的协作,从而提升生成视频的效率和质量。

LTX-Video的关键在于其精心设计的Video-VAE,该编码器达到了1:192的高压缩率,即每个token对应32 x 32 x 8像素的时空下采样,这是通过将补丁化(patchifying)操作从前置的Transformer移到VAE输入端来实现的。在如此高压缩的潜在空间中工作,使Transformer得以高效执行全时空自注意力机制,这对于生成时间连贯的高分辨率视频至关重要。然而,高压缩也限制了细节点的表示。为解决此问题,VAE解码器不仅负责从潜在空间到像素空间的转换,还完成了最后的去噪步骤,直接输出清晰的像素级结果。这种方式保持了细节生成的能力,而不需要增加额外的上采样模块所带来的运行成本。

LTX-Video支持多种应用案例,如文本到视频和图像到视频的生成,这些功能在同一训练过程中得到同步提升。该模型可以在Nvidia H100 GPU上实现超过实时速度的生成:仅需2秒就能生成一段5秒长、分辨率为768x512、帧率为24 fps的高质量视频,性能优于所有同类规模的现有模型。此外,我们已公开发布源代码和预训练模型,为视频生成领域树立了新的标杆。

论文: https://arxiv.org/pdf/2501.00103

3.Unifying Specialized Visual Encoders for Video Language Models

在这里插入图片描述

随着大语言模型(LLMs)的最新进展,视频大语言模型(VideoLLMs)为视频领域带来了先进的推理能力。然而,目前的VideoLLMs仅依靠单一视觉编码器进行所有的视觉处理,这限制了能够传递给LLM的视觉信息量和种类。为了解决这个问题,我们提出了多编码器视频表示(MERV)方法,该方法利用多个冻结的视觉编码器来创建一个视频的统一表示,从而为VideoLLM提供全面而专业的视觉知识。通过将来自每个编码器的特征进行时空对齐,MERV能够解决更广泛类型的开放式和选择题形式的视频理解问题,并显著优于以前的最佳方法。

实验结果表明,在标准视频理解基准测试中,MERV的准确率比Video-LLaVA高出了最多3.7%,并且在Video-ChatGPT评分上也有更好的表现。此外,MERV在零样本感知测试的准确性上超过了之前的最佳模型SeViLA 2.2%。值得注意的是,MERV仅引入了极少量的额外参数,训练速度比单编码器方法更快,并实现了视觉处理的并行化。

论文: https://arxiv.org/pdf/2501.01426

4. MLLM-as-a-Judge for Image Safety without Human Labeling

在这里插入图片描述

随着在线平台上视觉媒体的增长,图像内容安全已成为一个重要挑战。尤其在AI生成内容(AIGC)时代,许多图像生成模型能产生包含性或暴力内容等有害图像。因此,依据既定的安全规范识别这些不安全图像变得尤为重要。预训练的多模态大模型(MLLMs)在这方面展示了巨大潜力,得益于其卓越的模式识别能力。

目前的方法通常是用人类标注的数据集对MLLMs进行微调,但这种方法存在诸多不足。一方面,依赖人工标注员按照复杂的指导方针标注数据成本高昂且耗费人力;另一方面,由于安全系统用户可能经常需要更新安全规范,这使得基于人工标注的微调更为棘手。这促使我们思考:是否可以在零样本设定下,仅通过查询MLLMs并应用预设的安全规范来检测不安全图像?

我们的研究发现,简单地查询预训练MLLMs并不足以实现有效的检测。其原因在于安全规范的主观性、章程文本的复杂性及模型固有的偏差。为解决这些问题,我们提出了一套基于MLLM的方法,该方法包含以下步骤:

将安全规范具体化:将抽象的安全规则转化为明确的标准;
衡量规则与图像的相关度:评估哪些规则适用于具体的图像;
快速决策:基于去除偏差后的令牌概率,结合简化但逻辑完整的前提链条,迅速做出判断;
深度推理:如果需要,通过串联的链式思考过程进一步分析。

实验结果显示,我们的方法在零样本图像安全性判断任务上表现优异。

论文: https://arxiv.org/pdf/2501.00192


5、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值