1. DRT-o1: Optimized Deep Reasoning Translation via Long Chain-of-Thought
近年来,O1模型成为展示长链思维(Chain-of-Thought, CoT)在数学和编程等推理任务中效果的典型代表。在此基础上,我们推出了DRT-o1,旨在将长CoT的优势引入神经机器翻译(Neural Machine Translation, NMT)。特别是对于文学作品中涉及的比喻和隐喻,由于文化差异的存在,将其准确翻译成目标语言是一项挑战。实际操作中,直译通常无法有效传达作者的意图,即便是专业翻译人员也需深思熟虑以确保语义的完整性和准确性。
为了模拟大语言模型(LLMs)的长思考过程,我们在NMT中引入了长CoT方法。首先,我们从现有文学作品中提取含有比喻或隐喻的句子,然后建立一个多代理框架,通过长思考过程来翻译这些句子。在这个框架内,翻译员依据建议者的指导反复改进源句的翻译,同时由评估员负责判断每一轮翻译的质量是否有所提高。通过这种方法,我们收集了数万条采用长思考过程的机器翻译数据,并用它们训练了DRT-o1模型。
实验结果显示,DRT-o1在文学翻译任务中表现优异。使用Qwen2.5-7B和Qwen2.5-14B作为基础模型时,DRT-o1实现了7.33至8.26个BLEU点和1.66至3.36个CometScore的显著提升。此外,DRT-o1-7B在BLEU分数上超越了QwQ-32B-Preview 7.82分,在CometScore上提升了1.46分,充分证明了其优势。
项目代码和资源可以在以下链接获取:https://github.com/krystalan/DRT-o1。
论文: https://arxiv.org/pdf/2412.17498
2. Offline Reinforcement Learning for LLM Multi-Step Reasoning
为了快速适应复杂的任务,提高大型语言模型(LLMs)的多步推理能力是非常重要的,而离线强化学习(RL)为这一目标提供了有效途径。虽然直接偏好优化(DPO)在使LLMs与人类偏好对齐方面表现出色,但它不太适合多步推理任务,因为:(1) DPO需要成对偏好数据,而这类数据在多步推理任务中难以获得;(2) 它对待所有Token相同,无法有效处理多步推理任务中的稀疏奖励问题,即信用分配问题。
在本研究中,我们提出了一种新的离线强化学习方法——OREO(Offline Reasoning Optimization,离线推理优化),以增强LLMs的多步推理能力。OREO借鉴了最大熵强化学习的研究成果,通过优化软贝尔曼方程来同时学习策略模型和价值函数。理论上,这种方法减少了对成对数据的需求,并改进了信用分配。实验结果表明,在多步推理基准测试中,包括数学推理任务(如GSM8K、MATH)和具身智能体控制(如ALFWorld),OREO的表现超过了现有的离线学习方法。如果有额外资源可用,OREO还可以扩展到多轮迭代框架。
论文: https://arxiv.org/pdf/2412.16145
3. Multi-LLM Text Summarization
在本本文中,我们提出了一种多语言模型(Multi-LLM)摘要生成框架,并探索了两种不同的多语言模型策略——集中式和分布式。该框架在每轮对话中有两个核心步骤:摘要生成和质量评估。具体操作取决于采用的是集中式还是分布式多语言模型。
无论是集中式还是分布式策略,我们都会利用k个不同的语言模型生成文本的多样化摘要。然而,在评估阶段,集中式多语言模型摘要方法通过单一语言模型对所有摘要进行评估并挑选最优摘要;而在分布式策略中,则由k个语言模型共同参与评估过程。
实验结果显示,与仅依赖单个语言模型的传统方法相比,我们的多语言模型摘要方法表现出了显著的优势,性能提升最高可达三倍。这表明,多语言模型方法在摘要任务上具有更高的效率和准确性。
论文: https://arxiv.org/pdf/2412.15487
4. IDOL: Instant Photorealistic 3D Human Creation from a Single Image
从单张图像创建高保真、可动画化的3D全身人像一直是一个极具挑战性的任务,主要原因在于人类外观和姿势的多样性以及高质量训练数据的稀缺性。为了实现快速且高质量的人体重建,本研究从数据集、模型架构和表示方式三个角度对该任务进行了重新思考。
我们首先推出了一个名为HuGe100K的大规模数据集,该数据集由10万组多样化且逼真的多视角人体图像组成,每组图像包含24个不同视角的帧,这些图像由一个姿态可控的图像到多视角生成模型生成。接着,我们利用HuGe100K中丰富的视角、姿势和外观变化,开发了一个可扩展的前馈Transformer模型,能够从单张人体图像预测出统一空间中的3D高斯人体表示。该模型通过训练可以分离出人体的姿态、体型、服装几何及纹理信息。预测出的高斯分布可以直接用于动画制作,无需额外的后处理步骤。
我们的实验验证了新数据集和方法的有效性。结果显示,我们的模型能够在单个GPU上即时从单张输入图像高效重建1K分辨率的逼真人体,并且无缝支持多种应用,如形状和纹理编辑等任务。
论文: https://arxiv.org/pdf/2412.14963
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】