一、知识蒸馏(模型压缩)技术
1、什么是知识蒸馏?
知识蒸馏(Knowledge Distillation)是一种模型压缩技术,通过训练小型“学生模型”模仿大型“教师模型”的输出分布,实现知识迁移。其核心在于利用教师模型的软标签(概率分布)而非硬标签,传递更丰富的类别间关系信息。14年NIPS上由Google 的Hinton发表的《Distilling the Knowledge in a Neural Network》是首次提出知识蒸馏这个概念。
蒸馏过程通常包括以下几个步骤:
- 教师模型训练:首先,训练一个性能强大的大模型,这个模型通常具有大量的参数,能在各种任务上提供优异的性能。这个大模型即为“教师模型”。
- 学生模型设计:学生模型通常较小,参数量比教师模型少得多。其目的是在保证模型精度的同时,减少计算资源消耗,提高推理速度。
- 蒸馏过程:在训练学生模型时,采用教师模型的输出作为监督信号。不同于传统的监督学习,蒸馏技术利用教师模型的软标签(Soft Labels)而非硬标签。软标签通常是教师模型的输出概率分布,它携带了更多的信息,例如类别之间的相似度,这使得学生模型能够在较少的数据和参数的情况下,学到更加丰富的知识。
- 优化与精炼:学生模型通过模拟教师模型的行为,逐渐学习到其潜在的知识结构。通过反复训练,学生模型在大部分情况下能够接近或达到教师模型的性能,同时具有更高的计算效率和更小的内存占用。
2、主要作用
-
模型压缩: 蒸馏技术可以将大型模型压缩成较小的模型,使得其在移动设备或计算资源有限的环境中依然可以发挥较高的性能。
-
知识迁移: 学生模型不仅继承了教师模型的知识,还能在一些情况下进行自我优化,提升性能。
-
推理效率: 由于学生模型的规模较小,它在推理时所需的计算资源和时间都显著减少,有助于加速推理过程,尤其适用于实时应用场景。
大模型在场景落地时,会存在部署推理成本高、专业知识不足、幻觉问题严重等问题,因此在专业级市场,需要基于蒸馏、微调、RAG等手段,提升大模型在垂直领域的表现。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】