支持DeepSeek的于二次开发的大模型应用项目

一个轻量级、支持全链路且易于二次开发的大模型应用项目 支持DeepSeek/Qwen2等大模模型
源代码:http://www.gitpp.com/deepseeks/deepseek-web

基于DeepSeek,快速开发应用,快速获得用户,收割这一波流量,已经有老外基于DeepSeek获得大量用户,中国程序员应该动起来,持续完善deepseek生态

这个项目 是一个非常有前景和实用性的一站式大模型应用开发项目,结合了多种先进技术来构建一个功能强大、用户友好的应用。

一、技术栈

1. 前端技术:

  • Vue3:作为前端框架,Vue3 提供了更好的性能、更简洁的 API 和更强大的组合式 API,使得开发更加高效。

  • TypeScript:为 JavaScript 添加了类型系统,提高了代码的可读性和可维护性。

  • Vite 5:作为构建工具,Vite 提供了极快的开发服务器启动速度,优化了热模块替换(HMR)性能,使得开发体验更加流畅。

2. 后端及大模型相关技术:

  • Dify、Ollama&Vllm:这些可能是特定的大模型或模型框架,用于处理自然语言任务、生成文本或进行问答。

  • Sanic:一个高性能的 Python Web 框架,适用于构建快速、可扩展的后端服务。

  • Text2SQL:将自然语言查询转换为 SQL 查询的技术,用于从数据库中检索数据。

3. 数据可视化:

  • ECharts:一个强大的、可定制的数据可视化库,支持多种图表类型,适用于实现复杂的数据图形化展示。

4. 文件处理:

  • 支持处理 CSV 文件,使得应用能够处理和分析表格数据,提供基于表格的问答功能。

5. 第三方系统对接:

  • 方便对接第三方开源 RAG 系统和检索系统,扩展应用的知识库和问答能力。

二、功能特点

1. 数据图形化问答:

  • 用户可以通过自然语言提问,应用将基于大模型处理用户的查询,并使用 ECharts 生成相应的图表来展示结果。

2. 表格问答:

  • 应用能够处理 CSV 文件,用户可以上传表格数据,并通过自然语言提问来查询和分析数据。

3. 通用知识问答:

  • 通过对接第三方开源 RAG 系统和检索系统,应用能够提供更广泛的通用知识问答服务。

4. 现代 UI:

  • 使用 Vue3、TypeScript 和 Vite 5 打造的现代 UI,提供了良好的用户体验和可视化效果。

三、应用场景

  • 数据分析:用户可以通过上传 CSV 文件并提问来快速分析数据,无需编写复杂的 SQL 查询或使用数据分析工具。

  • 业务报表:应用可以生成各种业务报表,帮助用户更好地了解业务状况和趋势。

  • 知识问答:作为智能助手或客服系统,提供广泛的通用知识问答服务,提高用户满意度和效率。

展望

这个项目具有很大的潜力和应用价值,可以进一步扩展和优化以满足更多用户的需求。例如,可以添加更多类型的图表支持、增强数据处理能力、优化问答算法的准确性和效率等。同时,也可以考虑将应用部署到云端或移动设备上,以提供更广泛的使用场景和便捷性。


五、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

### DeepSeek二次开发指南 #### 一、官方资源获取 对于希望深入了解并进行DeepSeek二次开发的开发者而言,访问官方网站和技术论坛是必不可少的第一步。这些平台不仅提供了详尽的技术文档和支持服务,还包含了社区成员分享的经验和解决方案[^1]。 #### 二、技术文档解析 官方提供的《DeepSeek API Reference》涵盖了从环境配置到高级功能调用的所有方面,特别是针对想要定制化应用逻辑或集成第三方系统的场景。这份文档详细描述了各个接口的功能说明以及参数定义,帮助理解如何通过编程方式控制模型行为[^2]。 #### 三、示例项目分析 为了便于理解和实践,在GitHub仓库中存在多个由官方维护或是贡献者提交的成功案例。其中不乏涉及自然语言处理(NLP)任务优化、对话系统构建等方面的应用实例。例如,“Chatbot with DeepSeek”就是一个很好的起点,它展示了怎样利用预训练好的大型语言模型来创建智能聊天机器人。 ```python from deepseek import ChatModel model = ChatModel(model_name="deepseek-r1-distill-qwen-1.5b-gguf") response = model.generate(prompt="你好,世界!") print(response) ``` 上述代码片段来自一个简单的Python脚本,用于初始化基于DeepSeek的大规模语言模型,并向其发送一段中文问候语作为输入提示词,最终打印出生成的回答内容。 #### 四、常见问题解答 在探索过程中遇到难题时,《FAQs & Troubleshooting Guide》能够提供即时的帮助。该手册整理了一些典型错误及其解决办法,同时也鼓励用户积极参与讨论区交流心得,共同促进生态健康发展.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值