[行人重识别论文]Group-aware Label Transfer for Domain Adaptive Person Re-identification

摘要:无监督域自适应( UDA )行人重识别( ReID )旨在将在有标签的源域数据集上训练的模型适应到目标域数据集上,而不需要任何进一步的标注。大多数成功的UDAReID方法将基于聚类的伪标签预测与表示学习相结合,并以交替的方式执行这两个步骤。然而,这两个步骤之间的离线交互可能会允许有噪声的伪标签实质性地阻碍模型的能力。在本文中,我们提出了群体感知Label Transfer ( GLT )算法,实现了伪标签预测和表示学习的在线交互和相互促进。具体来说,标签迁移算法同时使用伪标签对数据进行训练,同时精炼伪标签作为在线聚类算法。它将在线标签精加工问题看作一个最优运输问题,探索将M个样本分配到N个伪标签的最小成本。更重要的是,我们引入群体感知策略为样本分配隐式属性组ID。在线标签精炼算法和群体感知策略的结合可以更好地在线修正噪声伪标签,缩小目标身份的搜索空间。Market1501→DukeMTMC ( 82.0 % )和DukeMTMC→Market1501 ( 92.2 % )的实验结果( Rank - 1准确率)表明了所提GLT的有效性。

Figure:说明了传统的方法和我们组感知的标签传递方法。在我们的方法中,每个实例被分配给多个粒度不同的原型来生成多组伪标签,然后对噪声多组伪标签进行在线精化。在精化的多组伪标签的指导下,我们的方法可以学习到一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值