再谈梯度与方向导数

不管是什么导数,都是计算函数的变化率,换句话说,在某个状态给系统一个轻微扰动观察其变化幅度,即取无穷小变化量 Δ \Delta Δ,df/dx就是一元函数f(x)的导数, δ \delta δf/ δ \delta δx 就是多元函数f(x,y…)的偏导数, δ \delta δf/ δ \delta δl (无穷小变化量 Δ \Delta Δ分给了各个变量,变化方向不再单一,而是多个变化一点点,总体还是一个单位的无穷小)就是方向导数。
要想明白方向导数就要纠正大脑的惯性思维,一元函数中的图像通常是一条曲线,这会让人有错觉,其实这样来表述就明白了:对于x在定义域中的任意取值,都有对应的函数值a,对x取无穷小的变化量dx,对应的函数值变化量a1-a2除以dx就是导数;类似的,在多元函数中,对于某个变量x在其定义域中的任意取值,都有对应的函数值a,对x取无穷小的变化量dx,对应的函数值变化量a1-a2除以dx就是其偏导数,若将无穷小的变化量 Δ \Delta Δ矢量分割给不同的变量x、y、z…,对应的函数值变化量f(x’,y’,z’…)-f(x,y,z…)除以 Δ \Delta Δ就是方向导数,而这个变化量由于有多个变量(方向)矢量合成,故其一般不是平常所见的沿单一变量方向的单位矢量。
至于梯度,它相当于一个标准,如果在某点按照梯度方向取单位变化量,函数变化幅度(因为都取的是单位变化量,所以幅度和变化率等同)比其他地方大,这是因为计算函数变化率(方向导数)的导出式中的cos θ \theta θ在同向时取最大值1。

注:一元函数只有一个变量所以只有一个变化方向,要用二元函数理解方向导数的几何意义。举个例子,你在山上,往南走不会掉下悬崖,往东走一步也不会掉下悬崖,但是你往东南走一步就掉下了悬崖,这就是梯度方向,即方向导数取最大值时的方向。

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值