算法日记day 34(动归之使用最小花费爬楼梯|不同路径2|整数拆分|不同的二叉搜索树)

一、使用最小花费爬楼梯

题目:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。

思路:

这里定义dp[i]数组的含义是爬到第i层所使用的最小花费为dp[i],而cost[i]的含义是从当前第i层往上爬的花费为cost[i],因此可得递推式为dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

代码:

public int minCostClimbingStairs(int[] cost) {
    // 创建一个 dp 数组,长度为 cost.length + 1,用于存储每一级的最小花费
    int[] dp = new int[cost.length + 1];
    
    // 初始化 dp 数组的前两项
    dp[0] = 0; // 第 0 级的最小花费为 0
    dp[1] = 0; // 第 1 级的最小花费为 0
    
    // 从第 2 级开始计算到达每一级的最小花费
    for (int i = 2; i <= cost.length; i++) {
        // dp[i] 表示到达第 i 级的最小花费
        // 要么从第 i-1 级到达第 i 级,需要花费 dp[i-1] + cost[i-1]
        // 要么从第 i-2 级到达第 i 级,需要花费 dp[i-2] + cost[i-2]
        // 取这两者中的最小值
        dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
    }
    
    // 返回到达楼梯顶端的最小花费,即 dp[cost.length]
    return dp[cost.length];
}
  1. 创建 dp 数组

    • int[] dp = new int[cost.length + 1];:创建一个 dp 数组,用于记录到达每一级的最小花费。数组的长度是 cost.length + 1,因为我们还需要考虑到达终点的情况。
  2. 初始化 dp 数组的前两项

    • dp[0] = 0;:起点到达第 0 级的最小花费是 0。
    • dp[1] = 0;:起点到达第 1 级的最小花费是 0。尽管不需要使用 cost[0] 和 cost[1] 的实际值来进行计算,但在这个问题中,通常这两个初始值设为 0 是为了处理边界条件。
  3. 计算每一级的最小花费

    • for (int i = 2; i <= cost.length; i++) {...}:从第 2 级开始计算,直到到达最后一层楼梯(即 cost.length 级)。
    • dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);:对于每一级 i,选择从前一级 i-1 还是前两级 i-2 中的最小花费加上相应的 cost
  4. 返回结果

    • return dp[cost.length];:返回到达楼梯顶端的最小花费,即 dp 数组的最后一个元素。

二、不同路径2

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有2条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

思路:

与不同路径1不同的是,该题需要判断在行驶路中是否可达,如果不可到达直接返回,可达则继续遍历,判断到达终点有几条路径的前提是路上无障碍物

代码:

public int uniquePathsWithObstacles(int[][] obstacleGrid) {
    int m = obstacleGrid.length; // 网格的行数
    int n = obstacleGrid[0].length; // 网格的列数
    int[][] dp = new int[m][n]; // 创建一个二维数组 dp,用于存储到达每个格子的路径数

    // 如果起点或终点有障碍物,则无法到达终点
    if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
        return 0;
    }

    // 初始化第一列:如果第一列的某个格子没有障碍物,则该列的路径数全为 1
    for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
        dp[i][0] = 1;
    }

    // 初始化第一行:如果第一行的某个格子没有障碍物,则该行的路径数全为 1
    for (int i = 0; i < n && obstacleGrid[0][i] == 0; i++) {
        dp[0][i] = 1;
    }

    // 遍历剩下的格子,填充 dp 数组
    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            // 如果当前格子没有障碍物,则路径数为从上方和左方的路径数之和
            if (obstacleGrid[i][j] == 0) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            } else {
                // 如果当前格子有障碍物,则路径数为 0
                dp[i][j] = 0;
            }
        }
    }

    // 返回到达终点的路径数
    return dp[m - 1][n - 1];
}
  1. 变量初始化

    • m 和 n 分别表示网格的行数和列数。
    • dp 是一个二维数组,用于记录到达每个格子的路径数。
  2. 边界条件处理

    • 如果起点 (obstacleGrid[0][0]) 或终点 (obstacleGrid[m - 1][n - 1]) 位置有障碍物,则返回 0,因为无法从起点到达终点。
  3. 第一列和第一行初始化

    • 对于没有障碍物的第一列,路径数为 1,因为只能从上方到达。
    • 对于没有障碍物的第一行,路径数为 1,因为只能从左方到达。
  4. 动态规划填充 dp 数组

    • 遍历网格中的每个格子,计算到达该格子的路径数。若当前位置无障碍物,路径数是从上方和左方格子的路径数之和。若有障碍物,路径数为 0。
  5. 结果返回

    • 最终返回到达终点 (m-1, n-1) 的路径数。

三、整数拆分

题目:

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例 1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

思路:

定义dp[i]数组的含义为,拆分数字i得到的数的乘积为dp[i],拆分一次得到的数为j,则该次拆分的乘积为j*(i-j),而继续拆分(i-j)相乘得到的成绩则为(j*dp[i-j]),因此就应比较该次拆分与下一次拆分所得的最大值

或者说

j * (i - j) 是单纯的把整数拆分为两个数相乘

j * dp[i - j]是拆分成两个以及两个以上的个数相乘

可得递推式为:     dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j)) 

代码:

public class Solution {
    public int integerBreak(int n) {
        // 创建一个大小为 n + 1 的数组,用于存储每个整数 i 的最大乘积
        int[] dp = new int[n + 1];
        
        // 基本情况:整数 2 的最大乘积是 1
        dp[2] = 1;
        
        // 从整数 3 到 n,计算每个整数 i 的最大乘积
        for (int i = 3; i <= n; i++) {
            // 遍历 j 从 1 到 i / 2,计算不同分解方式的最大乘积
            for (int j = 1; j <= i / 2; j++) {
                // 更新 dp[i] 为以下两者的最大值:
                // 1. j * (i - j): 直接分解成 j 和 i - j
                // 2. j * dp[i - j]: 将 i - j 进一步分解,然后乘以 j
                dp[i] = Math.max(dp[i], Math.max(j * (i - j), j * dp[i - j]));
            }
        }
        
        // 返回整数 n 的最大乘积
        return dp[n];
    }
}
  • dp 是一个大小为 n + 1 的数组,用于存储每个整数值 i2 到 n)可以分解的最大乘积。
  • 初始化 dp[2] = 1,因为对于 n = 2,唯一的分解方式是 1 + 1,乘积为 1
  • 外层循环 i 遍历从 3 到 n 的所有整数。
  • 内层循环 j 遍历从 1 到 i / 2 的所有值(i / 2 是为了避免重复计算,因为 j 和 i - j 是对称的)。
  • 对于每个 i 和 j,计算以下两个值的最大值:
    • j * (i - j):即 j 和 i - j 的乘积,表示将 i 分解成 j 和 i - j 两部分时的乘积。
    • j * dp[i - j]:即 j 乘以 dp[i - j],表示将 i - j 进一步分解并乘以 j 时的乘积。
  • 更新 dp[i] 为上述两个值的最大值,确保 dp[i] 始终存储从 i 分解得到的最大乘积。
  • 最终返回 dp[n],即将整数 n 分解成至少两个正整数的最大乘积。

四、不同的二叉搜索树 

题目:

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例 1:

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

思路:

首先,dp数组的含义是 i 个节点可以组成的二叉搜索树有dp[i]种,关键在于递推公式的确立,我们以其中一个节点 j 为根节点,

以节点 j 为根节点的,满足二叉搜索树的特性,其左子树的节点均比 j 的值小,数量则为j-1个,右子树的节点均比 j 的值大,数量则为i-j个,得到第一步

                                                           i = j + ( i - j )

对于n=3的二叉搜索树来说:

如果头节点为1,则其可以组成的二叉搜索树的情况为 左子树0个节点×右子树2个节点(2,3)

如果头节点为2,则情况有 左子树1个节点(0)× 右子树1个节点(3)

如果头节点为3,则情况为 左子树2个节点(1,2)× 右子树0个节点

可知 i 元素中可组成的二叉搜索树总个数为,其左右子树可组成的二叉搜索树的情况相乘后的总和

因此,可得递推公式:

                                                        dp[i] += dp[j-1] * dp[i-j]

其中,dp[j-1] 为左子树中全部符合二叉搜索树的情况,dp[i-j] 为右子树中全部符合二叉搜索树的情况

接下俩对dp数组进行初始化,节点数为0和1时,显然,可组成的二叉搜索树只有一种,因此

dp[0] = 1;    dp[1] = 1;

代码:

public class Solution {
    public int numTrees(int n) {
        // 创建一个大小为 n + 1 的数组,用于存储每个整数 i 对应的不同二叉搜索树的数量
        int[] dp = new int[n + 1];
        
        // 基本情况:0 个节点和 1 个节点的二叉搜索树数量都为 1
        dp[0] = 1;  // 空树
        dp[1] = 1;  // 只有一个节点的树
        
        // 遍历每个节点数量 i,从 2 到 n
        for (int i = 2; i <= n; i++) {
            // 对于每个 i,尝试以 j 作为根节点
            for (int j = 1; j <= i; j++) {
                // 当以 j 作为根节点时,左子树有 j - 1 个节点,右子树有 i - j 个节点
                // 将左子树和右子树的不同二叉搜索树的数量相乘,并累加到 dp[i] 中
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        
        // 返回具有 n 个节点的二叉搜索树的总数量
        return dp[n];
    }
}
  1. 状态定义

    • dp[i] 表示具有 i 个节点的二叉搜索树的不同结构数量。
  2. 基本情况

    • dp[0] = 1:没有节点的树只有一种情况,即空树。
    • dp[1] = 1:只有一个节点的树也只有一种情况。
  3. 状态转移

    • 对于每个 i 节点的树,我们考虑每个节点 j 作为根节点。
    • 如果节点 j 是根节点,那么:
      • 左子树包含 j - 1 个节点。
      • 右子树包含 i - j 个节点。
    • 左子树和右子树的不同结构数量分别是 dp[j - 1] 和 dp[i - j]
    • 计算方法是将左子树和右子树的结构数量相乘,然后将所有可能的根节点 j 对应的结果累加起来。
  4. 最终结果

    • dp[n] 存储的是具有 n 个节点的二叉搜索树的不同结构数量。

今天的学习就到这里 

  • 28
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值