RTX4090-Pytorch-DDP训练

NCCL_IB_DISABLE=1 NCCL_P2P_DISABLE=1 CUDA_VISIBLE_DEVICES=4,5 torchrun \
--nnodes=1 --nproc_per_node=2 --node_rank=0 \
--master_addr=localhost \
./xxx.py \

这条命令的作用是:
在单机环境下启动一个分布式训练任务。
使用两块 GPU(GPU 4 和 GPU 5),每个 GPU 分别运行一个进程。
禁用了 NCCL 的 InfiniBand 和 P2P 功能(有的4090需要启动此命令)

### RTX 3090 四卡配置方案 #### 硬件需求 构建基于 NVIDIA GeForce RTX 3090 的四显卡系统需要考虑多个硬件组件之间的兼容性和性能匹配。以下是主要的硬件需求: 1. **主板**: 主板需支持至少四个 PCIe x16 插槽,并提供足够的带宽来驱动这些 GPU。推荐使用工作站级或高端游戏主板,例如 ASUS ROG Strix X299-E Gaming 或 MSI MEG X570 ACE。这类主板通常具备更高的供电能力和散热设计[^1]。 2. **电源供应器 (PSU)**: 每张 RTX 3090 需要约 350W 功耗,因此总功耗可能达到 1400W 左右(未计算 CPU 和其他部件)。建议选用额定功率不低于 1600W 的高品质 PSU,如 Corsair AX1600i 或 Seasonic Prime TX-1600[^2]。 3. **机箱**: 大型 ATX 或 EATX 兼容机箱是必需品,因为它们能容纳多张全尺寸显卡以及额外的冷却设备。Fractal Design Define 7 XL RGB 是一个不错的选择[^3]。 4. **CPU 及内存**: 虽然训练深度学习模型时大部分负载由 GPU 承担,但主机仍应配备高性能处理器和充足 RAM 来处理数据预加载和其他辅助任务。Intel Core i9-12900K 或 AMD Ryzen Threadripper Pro 3975WX 结合至少 64GB DDR4 内存可以满足此需求[^4]。 #### 软件环境搭建 对于 CUDA 开发者来说,在 Linux 平台上设置一个多 GPU 训练环境至关重要。以下是一些关键步骤: 1. 安装最新版本的 NVIDIA Driver 和对应版次的 CUDA Toolkit (如 Cuda 11.x),确保所有驱动程序都已更新至官方发布的稳定状态。 2. 使用 NCCL 库优化跨节点通信效率;它专为加速分布式深度神经网络而设计,能够显著提升多 GPU 场景下的同步速度[^5]. 3. 对于特定框架的支持,比如 PyTorch 或 TensorFlow,则按照其文档指南完成安装过程即可实现无缝切换到 multi-GPU mode 下工作模式下执行运算操作命令行参数 `--gpus=auto` 就可以让程序自动检测可用资源并分配给各个进程实例共享利用整个集群内的全部算力潜能最大化发挥出来效果最佳表现形式呈现给大家看吧! ```bash # Example of running a script with multiple GPUs using PyTorch's DDP feature. CUDA_VISIBLE_DEVICES="0,1,2,3" python -m torch.distributed.launch --nproc_per_node=4 your_script.py ... ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值